Have a personal or library account? Click to login
Fading out of the trophic cascade at the base of the microbial food web caused by changes in the grazing community in mesocosm experiments Cover

Fading out of the trophic cascade at the base of the microbial food web caused by changes in the grazing community in mesocosm experiments

Open Access
|Dec 2011

References

  1. [1] Arvola, L. (1999). Trophic interactions. In Limnology of humic waters (pp. 265–279). Leiden: Backhuys Publishers.
  2. [2] Arvola, L., Eloranta, P., Järvinen, M., Keskitalo, J. & Holopaine, A-L. (1999). Phytoplankton. In Limnology of humic waters (pp. 137–171). Leiden: Backhuys Publishers.
  3. [3] Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. & Thingstad, F. (1983). The Ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263. http://dx.doi.org/10.3354/meps01025710.3354/meps010257
  4. [4] Bergström, A.-K., Jansson, M., Drakare, S. & Blomqvist P. (2003). Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshwater Biol., 48, 686–877. http://dx.doi.org/10.1046/j.1365-2427.2003.01061.x10.1046/j.1365-2427.2003.01061.x
  5. [5] Bloesch, J. (1988). Mesocosm studies. Hydrobiologia, 159, 221–222. http://dx.doi.org/10.1007/BF0000823510.1007/BF00008235
  6. [6] Burns, C. & Schallenberg, M. (2001). Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs of an oligotrophic and eutrophic lake. New Zealand J. Marine Freshwater Res., 35, 695–710. http://dx.doi.org/10.1080/00288330.2001.951703610.1080/00288330.2001.9517036
  7. [7] Callieri, C. & Stockner, J. G. (2002). Freshwater autotrophic picoplankton: a review. J. Limnol., 61, 1–14. 10.4081/jlimnol.2002.1
  8. [8] Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35, 635–639. http://dx.doi.org/10.2307/130998910.2307/1309989
  9. [9] Dowgiałło, A. (1984). Simplified photometric methods of determination of ammonia and Kjeldahl nitrogen in biological materials. Pol. Arch. Hydrobiol., 31, 317–339.
  10. [10] Flynn, K. & Mitra, A. (2009). Building the “perfect beast”: modelling mixotrophic plankton. J. Plankton Res., 31, 965–992. http://dx.doi.org/10.1093/plankt/fbp04410.1093/plankt/fbp044
  11. [11] Golterman, H. L. & Clymo, R. S. (1978). Methods for physical & chemical analysis of fresh waters (pp. 214). Oxford, Edinburgh, London, Melbourne: IBP Handbook No. 8. Blackwell Scientific Publications.
  12. [12] Horn, H. & Horn, W. (2008). Bottom-up or top-down — How is autotrophic picoplankton mainly controlled? Results of long term investigations from two drinking water reservoirs of different trophic state. Limnologica, 38, 302–312. http://dx.doi.org/10.1016/j.limno.2008.05.00710.1016/j.limno.2008.05.007
  13. [13] Jasser, I., Kostrzewska-Szlakowska, I., Ejsmont-Karabin, J., Kalinowska, K. & Węgleńska, T. (2009). Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities. Pol. J. Ecol., 57, 423–439.
  14. [14] Jones, R. I. (2000). Mixotrophy in planktonic protists: an overview. Freshwater Biol., 45, 219–226. http://dx.doi.org/10.1046/j.1365-2427.2000.00672.x10.1046/j.1365-2427.2000.00672.x
  15. [15] Jürgens, K. (1994). The impact of Daphnia on microbial food webs — a review. Mar. Microb. Food Webs., 8, 295–324.
  16. [16] Jürgens, K. & Jeppesen, E. (2000). The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J. Plankton Res., 22, 1047–1070. http://dx.doi.org/10.1093/plankt/22.6.104710.1093/plankt/22.6.1047
  17. [17] Malinsky-Rushansky, N. & Berman, T. (1991). Picocyanobacteria and bacteria in lake Kinneret. Int. Rev. Gesamten Hydrobiol., 76, 555–564. http://dx.doi.org/10.1002/iroh.1991076040810.1002/iroh.19910760408
  18. [18] Marker, A. F. H., Nush, E. A., Rai, H. & Riemann, B. (1980). The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations of the workshop. In Proceedings of the workshop on the measurement of photosynthetic pigments in freshwaters and standardization of methods. Arch. Hydrobiol./Beih. Ergebn. Limnol., 14, 91–106.
  19. [19] Mazumder, A. (1994). Patterns of algal biomass in dominant odd-vs. even-link lake ecosystems. Ecology, 75, 1141–1149.
  20. [20] Modenutti, B. E., Queimaliños, C. P., Balseiro, E. G. & Reissig, M. (2003). Impact of different zooplankton structures on the microbial food web of an Andean oligotrophic lake. Acta Oecologica, 24 S1, 289–298. http://dx.doi.org/10.1016/S1146-609X(03)00030-410.1016/S1146-609X(03)00030-4
  21. [21] Muylaert, K., Zhao, L., Van der Gucht, K., Cousin, S., Declerck, S. & Vyverman, W. (2006). Trophic coupling in the microbial food web of a eutrophic shallow lake (Lake Visvijer, Belgium). Arch. Hydrobiol., 166, 307–324. http://dx.doi.org/10.1127/0003-9136/2006/0166-030710.1127/0003-9136/2006/0166-0307
  22. [22] Pace, M. L. & Funke, E. (1991). Regulation of planktonic microbial communities by nutrients and herbivores. Ecology, 72, 904–914. http://dx.doi.org/10.2307/194059210.2307/1940592
  23. [23] Persson, L., Andersson, G., Hamrin, S. F. & Johansson, L. (1988). Predator regulation and primary production along the productivity gradient of temperate ecosystems, In Carpenter S. R. (Ed.), Complex interactions in Lake Communities (pp. 45–65). New York: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-3838-6_410.1007/978-1-4612-3838-6_4
  24. [24] Pomeroy, L. R. (1974). The oceans’s food web, changing paradigm. BioScience, 24, 499–504. http://dx.doi.org/10.2307/129688510.2307/1296885
  25. [25] Porter, K. G. & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948. http://dx.doi.org/10.4319/lo.1980.25.5.094310.4319/lo.1980.25.5.0943
  26. [26] Ptacnik, R., Sommer, U., Hansen, T. & Volker, M. (2004). Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol. Oceanogr., 49, 1435–1445. http://dx.doi.org/10.4319/lo.2004.49.4_part_2.143510.4319/lo.2004.49.4_part_2.1435
  27. [27] Rojo, C., Rodrigo, M. & Barón-Rodríguez, M. (2007). Dynamic of the planktonic food webs in Colgada Lake (Lagunas de Ruidera Natural Park). Limnetica, 26, 251–264. 10.23818/limn.26.22
  28. [28] Ronnenberger, D., Kasprzak, P. & Krienitz L. (1993). Long-term changes in the rotifer fauna after biomanipulation in Haussee (Feldberg, Germany, Magklenburg-Vorpommern) and its relationship to the crustacean and phytoplankton communities. Hydrobiologia, 255/256, 297–304. http://dx.doi.org/10.1007/BF0002585210.1007/BF00025852
  29. [29] Sarnelle, O. (1997). Daphnia effects on microzooplankton: comparisons of enclosure and whole-lake responses. Ecology, 78, 913–928. 10.2307/2266069
  30. [30] Sommer, U., Sommer, F., Santer, B., Zöllner, E., Jürgens, K., Jamieson, C., Boersma, M. & Gocke, K. (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, 135, 639–647. 10.1007/s00442-003-1214-716228259
  31. [31] Strong, D. R. (1992). Are trophic cascades ale wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–754. http://dx.doi.org/10.2307/194015410.2307/1940154
  32. [32] Utermohl, H. (1958). Zur Vervollkommnung der quatitativen Phytoplankton-Methodik. Int. Verein. Theoretische Angew. Limnol., 9, 1–38.
  33. [33] Vaqué, D. & Pace, M. L. (1992). Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food web structure. J. Plankton Res., 14, 307–321. http://dx.doi.org/10.1093/plankt/14.2.30710.1093/plankt/14.2.307
  34. [34] Zöllner, E., Santer, B., Boersma, M., Hoppe, H-G. & Jürgens, K. (2003). Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol., 48, 2174–2193. http://dx.doi.org/10.1046/j.1365-2426.2003.01158.x10.1046/j.1365-2426.2003.01158.x
DOI: https://doi.org/10.2478/s13545-012-0001-7 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 1 - 11
Published on: Dec 27, 2011
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Iwona Jasser, Iwona Kostrzewska-Szlakowska, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.