Have a personal or library account? Click to login
Composition and density of plant-associated invertebrates in relation to environmental gradients and hydrological connectivity of wetlands Cover

Composition and density of plant-associated invertebrates in relation to environmental gradients and hydrological connectivity of wetlands

Open Access
|Oct 2011

References

  1. [1] Amoros C., Bornette G., 2002, Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw. Biol., 47: 761–776 http://dx.doi.org/10.1046/j.1365-2427.2002.00905.x10.1046/j.1365-2427.2002.00905.x
  2. [2] Amoros C., Roux A.L., 1988, Interaction between water bodies within the floodplain of large rivers: function and development of connectivity. Minstersche Geographische Arbeiten, 29: 125–130
  3. [3] American Public Health Association (APHA) 1989, Standard methods for the examination of water and wastewater. 17Th ed. American Public Health Association (APHA), Washington D. C., USA
  4. [4] Baffico G.D., 2001, Variations in the periphytic community structure and dynamics of Lake Nahuel Huapi (Patagonia, Argentina). Hydrobiologia, 455: 79–85 http://dx.doi.org/10.1023/A:101199140279410.1023/A:1011991402794
  5. [5] Brönmark C., 1989, Interactions between epiphytes, macrophytes and freshwater snails: a review. J. Moll. Stud., 55: 299–311 http://dx.doi.org/10.1093/mollus/55.2.29910.1093/mollus/55.2.299
  6. [6] Cataneo A., 1987, Periphyton in like of different trophy. Can. J. Fish. Aquat. Sci., 44: 296–303 http://dx.doi.org/10.1139/f87-03810.1139/f87-038
  7. [7] Clausen B., Biggs B.J.F, 1997, Relationships between benthic biota and hydrological indices in New Zealand streams. Freshw. Biol., 38: 327–342 http://dx.doi.org/10.1046/j.1365-2427.1997.00230.x10.1046/j.1365-2427.1997.00230.x
  8. [8] Drake J.A., 1984, Species Aggregation: The influence of detritus in a benthic invertebrates community. Hydrobiology, 112: 109–115 http://dx.doi.org/10.1007/BF0000691410.1007/BF00006914
  9. [9] Dermott R.M., 1988, Zoobenthic distribution and biomass in the Turkey lakes. Can. J. Fish. Aquat. Sci. 45: 107–114 http://dx.doi.org/10.1139/f88-27410.1139/f88-274
  10. [10] Dynesius M., Nilsson C., 1994, Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science, 266: 753–762 http://dx.doi.org/10.1126/science.266.5186.75310.1126/science.266.5186.75317730396
  11. [11] Gallardo B., 2009, Aquatic community patterns across environmental gradients in a Mediterranean floodplain and their application to ecosystem restoration. PhD dissertation, Zaragosa-Girona
  12. [12] Gallardo B., Garcia M., Cabezas A., Gonzalez E., Gonzalez M., et al. 2008, Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci., 70: 248–258 http://dx.doi.org/10.1007/s00027-008-8024-210.1007/s00027-008-8024-2
  13. [13] Gasith A., Resh V.H., 1999, Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Syst., 30: 51–81 http://dx.doi.org/10.1146/annurev.ecolsys.30.1.5110.1146/annurev.ecolsys.30.1.51
  14. [14] Gibbins C.N., Dilks C.F., Malcolm R., Soulsby C., Juggins S., 2001, Invertebrate communities and hydrological variation in Cairngorm mountain streams. Hydrobiologia 462: 205–219 http://dx.doi.org/10.1023/A:101310270469310.1023/A:1013102704693
  15. [15] Glińska-Lewczuk K., 2009, Water quality dynamics of oxbow lakes in young glacial landscape of NE Poland in relation to their hydrological connectivity. Ecol. Eng., 35: 25–37 http://dx.doi.org/10.1016/j.ecoleng.2008.08.01210.1016/j.ecoleng.2008.08.012
  16. [16] Gotelli N.J., Entsminger G.L., 2004. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465.
  17. [17] Hann B.J., 1991, Invertebrate grazer-periphyton interactions in a eutrophic marsh pond. Freshwat. Biol., 26: 87–96 http://dx.doi.org/10.1111/j.1365-2427.1991.tb00511.x10.1111/j.1365-2427.1991.tb00511.x
  18. [18] Hill B.H., Herlihy A.T., Kaufmann P.R., Stevenson R.J., McCormick F.H., Johnson C.B., 2000, The use of periphyton assemblage data as an index of biotic integrity. J. N. Am. Benthol. Soc., 19: 50–67 http://dx.doi.org/10.2307/146828110.2307/1468281
  19. [19] Heino J., 2000, Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia, 418: 229–242 http://dx.doi.org/10.1023/A:100396921768610.1023/A:1003969217686
  20. [20] Jentsch A., Kreyling J., Beierkuhnlein C., 2007, A new generation of climate-change experiments: events, not trends. Fron. Ecol. Environ., 5: 365–374 http://dx.doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2
  21. [21] Kajak Z., 1988. Considerations on benthos abundance in freshwaters, its factors and mechanisms. Int. Revue ges. Hydrobiol. 73: 5–19 http://dx.doi.org/10.1002/iroh.1988073010310.1002/iroh.19880730103
  22. [22] Kasprzak K., Niedbała W., 1981, Biocenotic indices used for the analysis of quantitative data. [in]: Methods used in soil zoology, Eds. Górny M., Grüm L., PWN, Warszawa, pp. 397–402 (in Polish)
  23. [23] Legendre P., Troussellier M., 1988, Aquatic heterotrophic bacteria — modelling in the presence of spatial auto-Correlation. Limnol. Oceanogr., 33: 1055–1067 http://dx.doi.org/10.4319/lo.1988.33.5.105510.4319/lo.1988.33.5.1055
  24. [24] Macioszczyk A., 1987, Hydrogeochemia. Wyd. Geol. Warszawa, pp. 475
  25. [25] Mallory M.L., Blancher P.X., Weatherhead P.J., McNicol D.K., 1994, Presence or absence of fish as a cue to macroinvertebrate abundance in boreal wetlands. Hydrobiologia, 280: 345–351 http://dx.doi.org/10.1007/BF0002786610.1007/BF00027866
  26. [26] McCollum E.W., Crowder L.B., McCollum S.A., 1998, Complex interactions of fish, snails and littoral zone periphyton. Ecology, 79: 1980–1994 http://dx.doi.org/10.1890/0012-9658(1998)079[1980:CIOFSA]2.0.CO;2
  27. [27] Marshall J.C., Sheldon F., Thorns M., Choy S., 2006, The macroinvertebrate fauna of an Australian dryland river: spatial and temporal patterns and environmental relationships. Aust. J. Mar. Fresh. Res., 57: 61–74 http://dx.doi.org/10.1071/MF0502110.1071/MF05021
  28. [28] Mundy C.J., Hann B.J., 1997, Snail-periphyton interactions in a prairie wetland. University Field Station (Delta Marsh). Annual Report, 31: 40–52
  29. [29] Obolewski K., 2011, Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol. Eng., 37: 796–805 http://dx.doi.org/10.1016/j.ecoleng.2010.06.03710.1016/j.ecoleng.2010.06.037
  30. [30] Obolewski K., Glińska-Lewczuk K., Kobus S., 2009, The effect of flow on the macrozoobenthos structure in a re-opened oxbow lake — a case study of the Słupia river, northern Poland. [in:] Ecohydrology of Surface and Groundwater Dependent Systems: Concepts, Methods and Recent Developments. Eds. Thoms M., Heal K., Bøgh E., Chambel A. and Smakhtin V., IAHS Publ., 328: 13–23
  31. [31] Piesik Z., Obolewski K., 2004, Fouling fauna (zooperiphyton) inhabiting reed Phragmites australis (CAV.) Trin. ex STEUD. in lake Wicko Przymorskie. Baltic Coastal Zone, 8: 81–94
  32. [32] Peres-Neto P.R., Legendre P., Dray S., Borcard D., 2006, Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology, 87: 2614–2625 http://dx.doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
  33. [33] Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., et al. 1997, The natural flow regime. Bioscience, 47, 769–784 http://dx.doi.org/10.2307/131309910.2307/1313099
  34. [34] Poff N.L., Ward J.V., 1989, Implications of stream flow variability and predictability for lotic community structure -a regional-analysis of stream flow patterns. Can. J. Fish. Aquat. Sci. 46: 1805–1818 http://dx.doi.org/10.1139/f89-22810.1139/f89-228
  35. [35] R Development Core Team, 2007, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  36. [36] Rasmussen, J.B., 1988, Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. Can. J. Fish. Aquat. Sci. 45: 1436–1447 http://dx.doi.org/10.1139/f88-16810.1139/f88-168
  37. [37] Sandin L. 2003, Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography, 26: 269–282 http://dx.doi.org/10.1034/j.1600-0587.2003.03380.x10.1034/j.1600-0587.2003.03380.x
  38. [38] Sheldon F., Boulton A.J., Puckridge J.T., 2002, Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biol. Conserv., 103: 13–31 http://dx.doi.org/10.1016/S0006-3207(01)00111-210.1016/S0006-3207(01)00111-2
  39. [39] Taniguchi H., Nakano S., Tokeshi M., 2003, Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwat. Biol., 48: 718–728 http://dx.doi.org/10.1046/j.1365-2427.2003.01047.x10.1046/j.1365-2427.2003.01047.x
  40. [40] Ter Braak C.J.F., Šmilauer P., 2002, CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York
  41. [41] Tockner K., Pennetzdorfer D., Reiner N., Schiemer F., Ward J.V., 1999a, Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwat. Biol., 41: 521–535 http://dx.doi.org/10.1046/j.1365-2427.1999.00399.x10.1046/j.1365-2427.1999.00399.x
  42. [42] Tockner K., Schiemer F., Baumgartner C., Kum G., Weigand E., et al. 1999b, The Danube restoration project: Species diversity along habitat gradients in the floodplain system. Regulated Rivers 15: 245–258 http://dx.doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<;245::AID-RRR540>3.0.CO;2-G10.1002/(SICI)1099-1646(199901/06)15:1/3<;245::AID-RRR540>3.0.CO;2-G
  43. [43] Tockner K., Malard F., Ward J.V., 2000, An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883 http://dx.doi.org/10.1002/1099-1085(200011/12)14:16/17<;2861::AID-HYP124>3.0.CO;2-F10.1002/1099-1085(200011/12)14:16/17<;2861::AID-HYP124>3.0.CO;2-F
  44. [44] Van der Brink F.W.B, Van der Velde G., Buijse A.D., Klink A.G., 1996, Biodiversity of the Lower Rhine and Meuse river-floodplains: its significance for ecological management. Neth. J. Aquatic. Ecol., 30: 129–149 http://dx.doi.org/10.1007/BF0227223410.1007/BF02272234
  45. [45] Ward J.V., 1998, Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conserv., 83: 269–278 http://dx.doi.org/10.1016/S0006-3207(97)00083-910.1016/S0006-3207(97)00083-9
  46. [46] Ward J.V., Tockner K., Arscott D.B., Claret C., 2002, Riverine landscape diversity. Freshwat. Biol., 47: 517–539 http://dx.doi.org/10.1046/j.1365-2427.2002.00893.x10.1046/j.1365-2427.2002.00893.x
  47. [47] Wissmar R.C., 1991, Forest detritus and cycling of nitrogen in a mountain lake. Can. J. Forest. Research, 21: 990–998 http://dx.doi.org/10.1139/x91-13610.1139/x91-136
  48. [48] Woodcock T.S., Huryn A.D., 2007, The response of macroinvertebrate production to a pollution gradient in a headwater stream. Freshwat. Biol., 52: 177–196 http://dx.doi.org/10.1111/j.1365-2427.2006.01676.x10.1111/j.1365-2427.2006.01676.x
DOI: https://doi.org/10.2478/s13545-011-0041-4 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 52 - 63
Published on: Oct 25, 2011
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Krystian Obolewski, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.