Have a personal or library account? Click to login
FP-LMTO study of structural, electronic, thermodynamic and optical properties of MgxCd1−x
                     Se alloys Cover

FP-LMTO study of structural, electronic, thermodynamic and optical properties of MgxCd1−x Se alloys

Open Access
|Dec 2014

Abstract

Structural, electronic and optical properties of MgxCd1−x Se (0 ≤ x ≤ 1) are calculated for the first time using density functional theory. Our results show that these properties are strongly dependent on molar fraction of particular components — x. The bond between Cd and Se is partially covalent and the covalent nature of the bond decreases as the concentration of Mg increases from 0 % to 100 %. It is found that MgxCd1−x Se has a direct band gap in the entire range of x and the band gap of the alloy increases from 0.43 to 2.46 eV with the increase in Mg concentration. Frequency dependent dielectric constants ɛ1(ω), ɛ2(ω) refractive index n(ω) are also calculated and discussed in detail. The peak value of refractive indices shifts to higher energy regions with the increase in Mg. The larger value of the extraordinary refractive index confirms that the material is a positive birefringence crystal. The present comprehensive theoretical study of the optoelectronic properties of the material predicts that it can be effectively used in optoelectronic applications in the wide range of spectra: IR, visible and UV. In addition, we have also predicted the heat capacities (CV), the entropy (S), the internal energy (U) and the Helmholtz free energy (F) of MgxCd1−x Se ternary alloys.

DOI: https://doi.org/10.2478/s13536-014-0254-5 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 719 - 728
Published on: Dec 19, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 D. Bensaid, M. Ameri, M. El Hanani, Y. Azaz, D. Bendouma, Y. Al-Douri, I. Ameri, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.