Have a personal or library account? Click to login
Controlled mechanochemical synthesis and properties of a selected perovskite-type electroceramics Cover

Controlled mechanochemical synthesis and properties of a selected perovskite-type electroceramics

Open Access
|Aug 2013

References

  1. [1] Boldyrev V.V., Tkáčová K., J. Mater. Synth. Process., 8(3–4) (2000), 121. http://dx.doi.org/10.1023/A:101134770672110.1023/A:1011347706721
  2. [2] Gilman J.J., Science, 39 (1996), 65. http://dx.doi.org/10.1126/science.274.5284.6510.1126/science.274.5284.65
  3. [3] Suryanarayana C., Prog. Mater. Sci., 46 (2001), 1. http://dx.doi.org/10.1016/S0079-6425(99)00010-910.1016/S0079-6425(99)00010-9
  4. [4] Wieczorek-Ciurowa K., Mechanochemical Synthesis of Metallic-Ceramic Composite Powders, in: M. Sopicka-Lizer (Eds.), High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, Woodhead Publishing Ltd., 2010, p. 193. http://dx.doi.org/10.1533/9781845699444.2.19310.1533/9781845699444.2.193
  5. [5] Takacs L., Prog. Mater Sci., 47 (2002), 355. http://dx.doi.org/10.1016/S0079-6425(01)00002-010.1016/S0079-6425(01)00002-0
  6. [6] Avvakumov E., Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, Boston, 2001.
  7. [7] Wieczorek-ciurowa K., Rakoczy J., Błońskatabero A., Filipek E., Nizioł J., Dulian P., Catal. Today, 176 (2011), 314. http://dx.doi.org/10.1016/j.cattod.2010.12.00710.1016/j.cattod.2010.12.007
  8. [8] Zhang W., Lu L., Cheng Y., Xu N., Pan L., Lin Q., Wang Y., Green Chem., 13 (2011), 2701. http://dx.doi.org/10.1039/c1gc15557a10.1039/c1gc15557a
  9. [9] Wieczorek-Ciurowa K., Dulian P., Nosal A., Domagała J., J. Therm. Anal. Calorim., 101 (2010), 471. http://dx.doi.org/10.1007/s10973-010-0802-010.1007/s10973-010-0802-0
  10. [10] Wieczorek-Ciurowa K., Dulian P., Bąk W., Kajtoch C., Przem. Chem., 90 (2011), 1400. (in Polish).
  11. [11] Zhang Q., Saito F., Adv. Powder Technol., 23 (2012), 523. http://dx.doi.org/10.1016/j.apt.2012.05.00210.1016/j.apt.2012.05.002
  12. [12] Wieczorek-Ciurowa K., Gamrat K., J. Therm. Anal. Calorim., 88 (2007), 213. http://dx.doi.org/10.1007/s10973-006-8098-910.1007/s10973-006-8098-9
  13. [13] Garay A.L., Pichon A., James S.L., Cryst. Eng. Comm., 8 (2007), 846. 10.1039/b600363j
  14. [14] Carlier L., Baron M., Chamayou A., Couarraze G., Tetrahedron Lett., 52 (2011), 4686. http://dx.doi.org/10.1016/j.tetlet.2011.07.00310.1016/j.tetlet.2011.07.003
  15. [15] Johnson C.J., Appl. Phys. Lett., 7 (1965), 221. http://dx.doi.org/10.1063/1.175438710.1063/1.1754387
  16. [16] George C.N. et al., J. Mater. Charact., 60 (2009), 322. http://dx.doi.org/10.1016/j.matchar.2008.09.01210.1016/j.matchar.2008.09.012
  17. [17] Buscaglia V. et al., Powder Technol., 148 (2004), 24. http://dx.doi.org/10.1016/j.powtec.2004.09.01610.1016/j.powtec.2004.09.016
  18. [18] Hennings D., Int. J. Hig Technol. Ceram., 3 (1987), 91. http://dx.doi.org/10.1016/0267-3762(87)90031-210.1016/0267-3762(87)90031-2
  19. [19] Völtzke D., Abicht H.-P., J. Mater. Sci., 30 (1995), 4896. http://dx.doi.org/10.1007/BF0115450110.1007/BF01154501
  20. [20] Lin T.-F., Lin J.-L., Hu C.-T., Lin I.-N., J. Mater. Sci., 26 (1991), 491. http://dx.doi.org/10.1007/BF0057654810.1007/BF00576548
  21. [21] Kumar P., Singh S., Spah M., Juneja J.K., Prakash C., Raina K.K., J. Alloys Compd., 489 (2010), 59. http://dx.doi.org/10.1016/j.jallcom.2009.08.02410.1016/j.jallcom.2009.08.024
  22. [22] Nath A.K., Medhi N., Mater. Lett., 73 (2012), 75. http://dx.doi.org/10.1016/j.matlet.2011.12.11310.1016/j.matlet.2011.12.113
  23. [23] Kinoshita K., Yamaji A., J. Appl. Phys., 47 (1976), 371. http://dx.doi.org/10.1063/1.32233010.1063/1.322330
  24. [24] Buscaglia V. et al., J. Eur. Ceram. Soc., 26 (2006), 2889. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.00510.1016/j.jeurceramsoc.2006.02.005
  25. [25] Frey M.H., Payne D.A., Phys. Rev. B: Condens. Matter Mater. Phys., 54 (1996), 3158. http://dx.doi.org/10.1103/PhysRevB.54.315810.1103/PhysRevB.54.3158
  26. [26] Niepce J.C., Thomas G., Solid State Ionics, 43 (1990), 69. http://dx.doi.org/10.1016/0167-2738(90)90472-410.1016/0167-2738(90)90472-4
  27. [27] Bhalla A.S., Guo R., Roy R., Mater. Res. Innovations, 4 (2000), 3. http://dx.doi.org/10.1007/s10019000006210.1007/s100190000062
  28. [28] Jung W.S., Kim J.H., Kim H.T., Yoon D.H., Mater. Lett., 64 (2010), 170. http://dx.doi.org/10.1016/j.matlet.2009.10.03510.1016/j.matlet.2009.10.035
  29. [29] Tsuzuku K., Couzi M., J. Mater. Sci., 47 (2012), 4481. http://dx.doi.org/10.1007/s10853-012-6310-910.1007/s10853-012-6310-9
  30. [30] Frey M.H., Payne D.A., Appl. Phys. Lett., 63 (1993), 2753. http://dx.doi.org/10.1063/1.11032410.1063/1.110324
  31. [31] Lei J.-X., Liu X.-L., Chen J.-F., Adv. Mater. Res., 11–12 (2006), 23. http://dx.doi.org/10.4028/www.scientific.net/AMR.11-12.2310.4028/www.scientific.net/AMR.11-12.23
  32. [32] Testino A., Buscaglia V., Buscaglia M.T., Viviani M., Nanni P., Chem. Mater., 17 (2005), 5346. http://dx.doi.org/10.1021/cm051119f10.1021/cm051119f
  33. [33] Xu H., Gao L., Mater. Lett., 57 (2002), 490. http://dx.doi.org/10.1016/S0167-577X(02)00817-010.1016/S0167-577X(02)00817-0
  34. [34] Wu D.H., Shi X.Y., Zhang H.J. S, Yadian Yu Shengguang/Piezoelectric and Acoustooptics, 31 (2009), 251.
  35. [35] Kong L.B., Ma J., Huang H., Zhang R.F., Que W.X., J. Alloys Compd., 337 (2002), 226. http://dx.doi.org/10.1016/S0925-8388(01)01925-910.1016/S0925-8388(01)01925-9
  36. [36] Sundararajan T., Balasivanandha Prabu S., Manisha Vidyavathy S., Mater. Res. Bull., 47 (2012), 1448. http://dx.doi.org/10.1016/j.materresbull.2012.02.04410.1016/j.materresbull.2012.02.044
  37. [37] Zazhigalov V.A., Sidorchuk V.V., Khalameida S.V., Kuznetsova L.S., Inorg. Mater., 44 (2008), 641. http://dx.doi.org/10.1134/S002016850806017410.1134/S0020168508060174
  38. [38] Gomez-Yańez C., Benitez C., Balmoriramirez H., Ceram. Int., 26 (2000), 271. http://dx.doi.org/10.1016/S0272-8842(99)00053-X10.1016/S0272-8842(99)00053-X
  39. [39] Abe O., Suzuki Y., Mater. Sci. Forum, 225 (part 1) (1996), 563. 10.4028/www.scientific.net/MSF.225-227.563
  40. [40] Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Jovalekic C., Mitic V.V., Varela J.A., J. Eur. Ceram. Soc., 25 (2005), 1985. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.00310.1016/j.jeurceramsoc.2005.03.003
  41. [41] Brzozowski E., Castro M.S., Thermochim. Acta, 398 (2003), 123. http://dx.doi.org/10.1016/S0040-6031(02)00353-210.1016/S0040-6031(02)00353-2
  42. [42] Barin I., Knacke O., Kubaschewski O., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977. http://dx.doi.org/10.1007/978-3-662-02293-110.1007/978-3-662-02293-1
DOI: https://doi.org/10.2478/s13536-013-0126-4 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 462 - 470
Published on: Aug 29, 2013
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Piotr Dulian, Wojciech Bąk, Krystyna Wieczorek-Ciurowa, Czesław Kajtoch, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.