[1] Anthony, R. M., Urban, J. F. Jr., Alem, F., Hamed, H. A., Rozo, C. T., Boucher, J. L., Van Rooijen, N., Gause, W. C. (2006): Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat. Med., 12(8): 955–960. DOI: 10.1038/nm1415 http://dx.doi.org/10.1038/nm145110.1038/nm1415
[2] Behnke, J. M, Mugambi, J. M., Clifford, S., Iraqi, F. A., Baker, r. L., Gibson, J. P., Wakelin. D. (2006): Genetic variation in resistance to repeated infections with Heligmosomoides polygyrus bakeri, in inbred mouse strains selected for the mouse genome project. Parasite Immunol., 28(3): 85–94. DOI: 10.1111/j.1365-3024.2005.00810.x http://dx.doi.org/10.1111/j.1365-3024.2005.00810.x10.1111/j.1365-3024.2005.00810.x
[9] Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z. (2005): Development of T-cell immune response in experimental murine trichinellosis. Helminthologia, 42(4): 187–196. DOI: 10.2478/s11687-010-0023-x10.2478/s11687-010-0023-x
[10] Dvorožňáková, E., Hurníková, Z., Kołodziej-Sobociń-ska, M. (2010): Kinetics of specific humoral immune response of mice infected with low doses of Trichinella spiralis, T. britovi, and T. pseudospiralis larvae. Helminthologia, 47(3): 152–157. DOI: 10.2478/s11687-010-0023-x http://dx.doi.org/10.2478/s11687-010-0023-x10.2478/s11687-010-0023-x
[11] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2011): Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, T. britovi, and T. pseudospiralis larvae. Parasitol. Res., 108(1): 169–176. DOI: 10.1007/s00436-010-2049-x http://dx.doi.org/10.1007/s00436-010-2049-x10.1007/s00436-010-2049-x
[13] Fabre, V., Beiting, D. P., Bliss, S. K., Gebreselassie, N. G., Gagliardo, L. F., Lee, N. A., Lee, J. J., Appleton, J. A. (2009): Eosinophil deficiency compromises parasite survival in chronic mematode infection. J. Immunol., 182(3): 1577–1583 10.4049/jimmunol.182.3.1577392338219155506
[14] Finkelman, F. D., Sheadonohue, T., Goldhill, J., Sullivan, C. A., Morris, S. C., Madden, K. B., Gause, W. C., Urban, J. F. (1997): Cytokine regulation of host defense against parasitic gastrointestinal nematodes: Lessons from studies with rodent models. Ann. Rev. Immunol., 15: 505–533. DOI: 10.1146/annurev.immunol.15.1.505 http://dx.doi.org/10.1146/annurev.immunol.15.1.50510.1146/annurev.immunol.15.1.5059143698
[15] Grove, D. I., Hamburger, J., Warren, K. S. (1977): Kinetics of immunological responses, resistance to reinfection, and pathological reactions to infection with Trichinella spiralis. J. Infect. Dis., 136(4): 562–570. http://dx.doi.org/10.1093/infdis/136.4.56210.1093/infdis/136.4.562908853
[17] Gurish, M. F., Bryce, P. J., Tao, H., Kisselgof, A. B., Thornton, E. M., Miller, H. R., Friend, D. S., Oettgen, H. C. (2004): IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J. Immunol., 172(2): 1139–1145 10.4049/jimmunol.172.2.113914707089
[18] Helmby, H., Grencis, R. K. (2003): IFN-gamma-independent effects of IL-12 during intestinal nematode infection. J. Immunol., 171(7): 3691–3696 10.4049/jimmunol.171.7.369114500667
[19] Herndon, F. J., Kayes, S. G. (1992): Depletion of eosinophils by anti-IL-5 monoclonal antibody treatment of mice infected with Trichinella spiralis does not alter parasite burden or immunologic resistance to reinfection. J. Immunol., 149(11): 3642–3647 10.4049/jimmunol.149.11.3642
[21] Kang, S. A., Cho, M. K., Park, M. K., Kim, D. H., Hong, Y. C., Lee, Y. S., Cha, H. J., Ock, M. S., Yu, H. S. (2012): Alteration of helper T-cell related cytokine production in splenocytes during Trichinella spiralis infection. Vet. Parasitol., 186(3–4): 319–327 DOI: 10.1016/j.vetpar.2011.12.002 http://dx.doi.org/10.1016/j.vetpar.2011.12.00210.1016/j.vetpar.2011.12.00222222009
[24] Kinashi, T., Harada, N., Severinson, E., Tanabe, T., Sideras, P., Konishi, M., Azuma, C., Tominaga, A., Bergstedt-Lindqvist, S., Takahashi, M., Matsuda, F., Yaoita, Y., Takatsu, K., Honjo, T. (1986): Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature, 324(6092): 70–73. DOI: 10.1038/324070a0 http://dx.doi.org/10.1038/324070a010.1038/324070a03024009
[27] Li, C. K. F., Ko, R. C. (2001): The detection and occurrence of circulating antigens of Trichinella spiralis during worm development. Parasitol. Res., 87(2): 155–162. DOI: 10.1007/PL00008569 http://dx.doi.org/10.1007/PL0000856910.1007/PL00008569
[28] Maclean, J. D., Viallet, J., Law, C., Staudt, M. 1989): Trichinosis in the Canadian Arctic: report of 5 outbreaks and a new clinical syndrome. J. Infect. Dis., 160(3): 513–520 http://dx.doi.org/10.1093/infdis/160.3.51310.1093/infdis/160.3.5132760502
[32] Morales, M. A. G., Mele, R., Sanchez, M., Sacchini D., Degiacomo, M., Pozio, E. (2002): Increased CD8(+)-Tcell expression and a type 2 cytokine pattern during the muscular phase of Trichinella infection in humans. Infect. Immun., 70(1): 233–239 http://dx.doi.org/10.1128/IAI.70.1.233-239.200210.1128/IAI.70.1.233-239.200212760111748188
[33] Moskwa, B. (1999): Trichinella spiralis: in vitro cytotoxicity of peritoneal cells against synchronous newborn larvae of different age. Parasitol. Res., 85(1): 59–63. DOI: 10.1007/s004360050507 http://dx.doi.org/10.1007/s00436005050710.1007/s004360050507
[36] Nöckler, K. (2003): Trichinella prevalence in domestic and sylvatic cycle and its importance as foodborne pathogen. Helminthologia, 40(2): 103–108
[37] Picherot, M., Oswald, I. P., Cote, M., Noeckler, K., Le Guerhier, F., Boireau, P., Vallee, I. (2007): Swine infection with Trichinella spiralis: Comparative analysis of the mucosal intestinal and systemic immune responses. Vet. Parasitol., 143(2): 122–130. DOI: 10.1016/j.vetpar.2006.08.003 http://dx.doi.org/10.1016/j.vetpar.2006.08.00310.1016/j.vetpar.2006.08.003
[38] Reiterová, K., Dubinský, P., Klimenko, V. V., Tomašovičová, O., Dvorožňáková, E. (1999): Comparison of Trichinella spiralis larva antigens for the detection of specific antibodies in pigs. Vet. Med-Czech. 44(1): 1–5
[40] Santamarina, M. T., Leiro, J., Baltar, P., Romaris, F., Sanmartin, M. L., Ubeira, F. M. (1993): Requirements for the induction of cross-reactive anti-Trichinella IgE antibodies in mice. Parasitol. Res. 79(1): 63–66. DOI: 10.1007/BF00931219 http://dx.doi.org/10.1007/BF0093121910.1007/BF009312198469671
[41] Šoltýs, J., Quinn, M. T. (1999): Modulation of endotoxin- and enterotoxin-induced cytokine release by in vivo treatment with beta-(1,6)-branched beta-(1,3)-glucan. Infect. Immun. 67(1): 244–252 10.1128/IAI.67.1.244-252.1999963039864222
[42] Soule, C., Dupouy-Camet, J., Georges, P., Fontaine, J. J., Ancelle, T., Delvigne, A., Perret, C., Collobert, C. (1993): Biological and parasitological modifications in mares infected and reinfected by Trichinella spiralis. Vet. Res. 24(1): 21–31
[43] Urban, J. F., Schopf, L., Morris, S. C., Orekhova, T., Madden, K. B., Betts, C. J., Gamble, H. R., Byrd, C., Donaldson, D., Else, K., Finkelman, F. D. (2000): Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. J. Immunol. 164(4): 2046–2052 10.4049/jimmunol.164.4.204610657657
[44] Vallance, B. A., Galeazzi, F., Collins, S. M., Snider, D. P. (1999): CD4 T cells and major histocompatibility complex class II expression influence worm expulsion and increased intestinal muscle contraction during Trichinella spiralis infection. Infect. Immun. 67(11): 6090–6097 10.1128/IAI.67.11.6090-6097.19999699710531271
[47] Venturiello, S. M., Costantino, S. N., Giambartolomei, G. H. (1996): Blocking anti-Trichinella spiralis antibodies in chronically infected rats. Parasitol. Res. 82(1): 77–81 http://dx.doi.org/10.1007/s00436005007210.1007/s004360050072
[51] Zaph, C., Rook, K. A., Goldschmidt, M., Mohrs, M., Scott, P., Artis, D. (2006): Persistence and function of central and effector memory CD4(+) T cells following infection with a gastrointestinal helminth. J. Immunol. 177(1): 511–518 10.4049/jimmunol.177.1.511180570216785548