Have a personal or library account? Click to login
In vivo inhibition of inducible nitric oxide synthase by aminoguanidine influences free radicals production and macrophage activity in Trichinella spiralis infected low responders (C57BL/6) and high responders (BALB/c) mice
[2] Andrade, M. A., Siles-Lucas, M., Lopez-Aban, J., Nogal-Ruiz, J. J., Perez-Arellano, J. J., Martinezfernandez, A. R., Muro, A. (2007): Trichinella: Differing effects of antigens from encapsulated and non-encapsulated species on in vitro nitric oxide production. Vet. Parasitol., 143: 86–90. DOI: 10.1016/j.vetpar.2006.07.026 http://dx.doi.org/10.1016/j.vetpar.2006.07.02610.1016/j.vetpar.2006.07.02616959431
[3] Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., Freeman, B. A. (1990): Apparent hydroxyl radical production by peroxynitrite — implications for endothelial injury from nitric-oxide and superoxide. Proc. Natl. Acad. Sci. USA, 87: 1620–1624 http://dx.doi.org/10.1073/pnas.87.4.162010.1073/pnas.87.4.1620535272154753
[5] Bhattacharjee, S., Gupta, G., Bhattacharya, P., Adhikari, A., Majumdar, S. B., Majumdar, S. (2009): Anti-IL-10 mAb protection against experimental visceral leishmaniasis via induction of Th1 cytokines and nitric oxide. Indian J. Exp. Biol., 47: 489–497
[6] Bian, K., Harari, Y., Zhong, M., Lai, M., Castro, G., Weisbrodt, N., Murad, F. (2001): Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasiteinduced gut inflammation: a path to identify a selective NOS-2 inhibitor. Mol. Pharmacol., 59: 939–947
[7] Bian, K., Zhong, M., Harari, Y., Lai, M. G., Weisbrodt, N., Murad, F. (2005): Helminth regulation of host IL-4Rα/Stat6 signaling: Mechanism underlying NOS-2 inhibition by Trichinella spiralis. Proc. Natl. Acad. Sci. USA, 102: 3936–3941. DOI: 10.1073.pnas.0409461102 http://dx.doi.org/10.1073/pnas.040946110210.1073/pnas.040946110255480915741272
[8] Boczoń, K., Wandurska-Nowak, E., Wierzbicki, A., Frydrychowicz, M., Mozerlisewska, I., Żeromski, J. (2004): m-RNA expression and immunohistochemical localization of inducible nitric oxide synthase (NOS-2) in the muscular niche of Trichinella spiralis. Folia Histochem. Cyto., 42: 209–213
[10] Brown, J. K., Donaldson, D. S., Wright, S. H., Miller, H. R. P. (2003): Mucosal mast cells and nematode infection: strain-specific differences in mast cell precursor frequency revisited. J. Helminthol., 77: 155–161. DOI: 10.1079/JOH2002160 http://dx.doi.org/10.1079/JOH200216010.1079/JOH200216012756069
[11] Bueno, A. C., Seahorn, T. L., Cornick-Seahorn, J., Horohov, D. W., Moore, R. M. (1999): Plasma and urine nitric oxide concentrations in horses given a low dose of endotoxin. Am. J. Vet. Res., 60: 969–976
[12] Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A., Carvalho, L. J. M. (2011): Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis., 203: 1454–1463. DOI: 10.1093/infdis/jir058 http://dx.doi.org/10.1093/infdis/jir05810.1093/infdis/jir058308088821415018
[13] Cayatte, A. J., Palacino, J. J., Horten, K., Cohen, R. A. (1994): Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Tromb., 14: 753–759 http://dx.doi.org/10.1161/01.ATV.14.5.75310.1161/01.ATV.14.5.753
[20] Ding, A. H., Nathan, C. F., Stuehr, D. J. (1988): Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol., 141: 2407–2412 10.4049/jimmunol.141.7.2407
[21] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2011): Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae. Parasitol. Res., 108: 169–176. DOI: 10.1007/s00436-010-2049-x http://dx.doi.org/10.1007/s00436-010-2049-x10.1007/s00436-010-2049-x
[22] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2010): Kinetics of specific humoral immune response of mice infected with low doses of Trichinella spiralis, T. brotovi, and T. pseudospiralis larvae. Helminthologia, 47(3): 152–157. DOI: 10.2478/s11687-010-0023-x http://dx.doi.org/10.2478/s11687-010-0023-x10.2478/s11687-010-0023-x
[23] Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z. (2005): Development of T-cell immune response in experimental murine trichinellosis. Helminthologia, 42: 187–196
[25] Faulkner, H., Humphreys, N., Renauld, J. C., van Snick, J., Grencis, R. (1997): Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol., 27: 2536–2540. DOI: 10.1002/eji.1830271011 http://dx.doi.org/10.1002/eji.183027101110.1002/eji.18302710119368607
[26] Garside, P., Hutton, A. K., Severn, A., Liew, F. Y., Mc Mowat, A. I. (1992): Nitric oxide mediates intestinal pathology in graft-vs.-host disease. Eur. J. Immunol., 22: 2141–2145. DOI: 10.1002/eji.180220827 http://dx.doi.org/10.1002/eji.1830220827
[28] Granger, D. L., Hibbs, J. B. Jr., Broadnax, L. M. (1991): Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NGmonomethyl- L-arginine. J. Immunol., 146: 1294–1302
[32] Hogaboam, C. M., Collins, S. M., Blennerhasset, M. G. 1996): Efectes of oral L-NAME during Trichinella spiralis infection in rats. Am. J. Physiol., 271: G338–G346 10.1152/ajpgi.1996.271.2.G338
[34] Karmańska, K., Houszka, M., Widyma, A., Stefaniak, E. 1997): Macrophages during infection with Trichinella spiralis in mice. Wiad. Parazytol., 43: 245–249
[35] Khan, W. I., Vallance, B. A., Blennerhassett, P. A., Deng, Y., Verdu, E. F., Matthaei, K. I., Collins, S. M. 2001): Critical role for signal transducer and activator of transcription factor 6 in mediating intestinal muscle hypercontractility and worm expulsion in Trichinella spiralis-infected mice. Infect. Immun., 69: 838–844. DOI: 10.1128/IAI.69.2.838-844.2001 http://dx.doi.org/10.1128/IAI.69.2.838-844.200110.1128/IAI.69.2.838-844.2001
[38] Kołodziej-Sobocińska, M., Dziemian, E., Machnickarowińska, B. (2006b): Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” C57BL/6) and “high responders” (BALB/c) mice. Parasitol. Res., 99: 194–196. DOI: 10.1007/s00436-006-0144-9 http://dx.doi.org/10.1007/s00436-006-0144-910.1007/s00436-006-0144-9
[41] Liew, F.Y., Millott, S., Parkinson, C., Palmer, R.M., Moncada, S. (1990): Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J. Immunol., 144: 4794–4797
[42] Liew, F. Y., Wei, X. Q., Proudfoot, L. (1997): Cytokines and nitric oxide as effector molecules against parasitic infections. Phil. Trans. R. Soc. Lond. B., 352: 1311–1315 http://dx.doi.org/10.1098/rstb.1997.011510.1098/rstb.1997.0115
[43] Luss, H., Di Silvio, M., Litton, A. L., Molina, Y., Vedia, L., Nussler, A. K., Billiar, T. R. (1994): Inhibition of nitric oxide synthesis enhances the expression of inducible nitric oxide synthase mRNA and protein in a model of chronic liver inflammation. Biochem. Biophys. Res. Commun., 204: 635–640. DOI: 10.1006/bbrc.1994.2506 http://dx.doi.org/10.1006/bbrc.1994.250610.1006/bbrc.1994.2506
[44] Luss, H., Li, R. K., Shapiro, R. A., Tzeng, E., Mc Gowan, F. X., Yoneyama, T., Hatakeyama, K., Geller, D. A., Mickle, D. A., Simmons, R. L., Billiar, T. R. (1997): Differentiated human ventricular cardiac myocytes express inducible nitric oxide synthase mRNA but not protein in response to IL-1, TNF, IFN-gamma, and LPS. J. Mol. Cell. Cardiol., 29: 1153–1165. DOI: 10.1006/jmcc.1996.0349 http://dx.doi.org/10.1006/jmcc.1996.034910.1006/jmcc.1996.0349
[45] Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., Hill, A. M. (2000): M-1 / M-2 macrophages and the Th1/Th2 paradigm. J. Immunol., 164: 6166–6173
[46] Misko, T. P., Moore, W. M., Kasten, T. P., Nickols, G. A., Corbett, J. A., Tilton, R. G., Mc Daniel, M. L., Williamson, J. R., Currie, M. G. (1993): Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol., 233: 119–125. DOI: 10.1016/0014-2999(93)90357-N http://dx.doi.org/10.1016/0014-2999(93)90357-N10.1016/0014-2999(93)90357-N
[49] Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C., Degraff, W., Friedman, N., Tsokos, M., Samuni, A., Mitchell, J. B. (1995): Nitric oxide potentates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med., 182: 1469–1479 http://dx.doi.org/10.1084/jem.182.5.146910.1084/jem.182.5.1469
[52] Rajan, T. V., Porte, P., Yates, J. A., Keefer, L., Shultz, L. D. (1996): Role of nitric oxide in host defense against extracellular metazoan parasite Brugia malayi. Infect. Immun., 64: 3351–3353
[53] Reiterová, K., Dubinský, P., Klimenko, V.V., Tomašovičová, O., Dvorožňáková, E. (1999): Comparison of Trichinella spiralis larva antigens for the detection of specific antibodies in pigs. Veterinarni Med., 44 1): 1–5
[56] Shanta, C. S., Meerovich, E. (1967): The life cycle of Trichinella spiralis. II. The muscle phase of development and its possible evolution. Can. J. Zool., 45: 1261–1267
[57] Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M., Agarwal, S. S. (2000): Modulation of autoimmune diseases by nitric oxide. Immunol. Res., 22: 1–19. DOI: 10.1385/IR:22:1:1 http://dx.doi.org/10.1385/IR:22:1:110.1385/IR:22:1:1
[58] Urban, J. F., Schopf, L., Morris, S. C., Orekhova, T., Madden, K. B., Betts, C. J., Gamble, H. R., Byrd, C., Donaldson, D., Else, K., Finkelman, F. D. (2000): Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. J. Immunol., 164: 2046–2052
[60] Zeballos, G. A., Bernstein, R. D., Thompson, C. I., Forfia, P. R., Seyedi, N., Shen, W., Kaminski, P. M., Wolin, M. S., Hintze, t. H. (1995): Pharmacodynamics of plasma nitrate/nitrite as an indicator of nitric oxide formation in conscious dogs. Circulation, 91: 2982–2988 http://dx.doi.org/10.1161/01.CIR.91.12.298210.1161/01.CIR.91.12.29827796509