Have a personal or library account? Click to login

In vivo inhibition of inducible nitric oxide synthase by aminoguanidine influences free radicals production and macrophage activity in Trichinella spiralis infected low responders (C57BL/6) and high responders (BALB/c) mice

Open Access
|Nov 2012

References

  1. [1] Alonso-Trujillo, J., Rivera-Montoya, I., Rodriguezsosa, M., Terrazas, L. I. (2007): Nitric oxide contributed to host resistance against experimental Taenia crassiceps cysticercosis. Parasitol. Res., 100: 1341–1350. DOI: 10.1007/s00436-006-0424-4 http://dx.doi.org/10.1007/s00436-006-0424-410.1007/s00436-006-0424-417206501
  2. [2] Andrade, M. A., Siles-Lucas, M., Lopez-Aban, J., Nogal-Ruiz, J. J., Perez-Arellano, J. J., Martinezfernandez, A. R., Muro, A. (2007): Trichinella: Differing effects of antigens from encapsulated and non-encapsulated species on in vitro nitric oxide production. Vet. Parasitol., 143: 86–90. DOI: 10.1016/j.vetpar.2006.07.026 http://dx.doi.org/10.1016/j.vetpar.2006.07.02610.1016/j.vetpar.2006.07.02616959431
  3. [3] Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., Freeman, B. A. (1990): Apparent hydroxyl radical production by peroxynitrite — implications for endothelial injury from nitric-oxide and superoxide. Proc. Natl. Acad. Sci. USA, 87: 1620–1624 http://dx.doi.org/10.1073/pnas.87.4.162010.1073/pnas.87.4.1620535272154753
  4. [4] Beiting, D. P., Bliss, S. K., Schafer, D. H., Roberts, V. L., Appleton, J. A. (2004): Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect. Immun., 72: 3129–3137. DOI: 10.1128/IAI.72.6.3129-3137.2004 http://dx.doi.org/10.1128/IAI.72.6.3129-3137.200410.1128/IAI.72.6.3129-3137.200441566415155614
  5. [5] Bhattacharjee, S., Gupta, G., Bhattacharya, P., Adhikari, A., Majumdar, S. B., Majumdar, S. (2009): Anti-IL-10 mAb protection against experimental visceral leishmaniasis via induction of Th1 cytokines and nitric oxide. Indian J. Exp. Biol., 47: 489–497
  6. [6] Bian, K., Harari, Y., Zhong, M., Lai, M., Castro, G., Weisbrodt, N., Murad, F. (2001): Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasiteinduced gut inflammation: a path to identify a selective NOS-2 inhibitor. Mol. Pharmacol., 59: 939–947
  7. [7] Bian, K., Zhong, M., Harari, Y., Lai, M. G., Weisbrodt, N., Murad, F. (2005): Helminth regulation of host IL-4Rα/Stat6 signaling: Mechanism underlying NOS-2 inhibition by Trichinella spiralis. Proc. Natl. Acad. Sci. USA, 102: 3936–3941. DOI: 10.1073.pnas.0409461102 http://dx.doi.org/10.1073/pnas.040946110210.1073/pnas.040946110255480915741272
  8. [8] Boczoń, K., Wandurska-Nowak, E., Wierzbicki, A., Frydrychowicz, M., Mozerlisewska, I., Żeromski, J. (2004): m-RNA expression and immunohistochemical localization of inducible nitric oxide synthase (NOS-2) in the muscular niche of Trichinella spiralis. Folia Histochem. Cyto., 42: 209–213
  9. [9] Bogdan, C. (2001): Nitric oxide and the immune response. Nat. Immunol., 2: 907–916 http://dx.doi.org/10.1038/ni1001-90710.1038/ni1001-90711577346
  10. [10] Brown, J. K., Donaldson, D. S., Wright, S. H., Miller, H. R. P. (2003): Mucosal mast cells and nematode infection: strain-specific differences in mast cell precursor frequency revisited. J. Helminthol., 77: 155–161. DOI: 10.1079/JOH2002160 http://dx.doi.org/10.1079/JOH200216010.1079/JOH200216012756069
  11. [11] Bueno, A. C., Seahorn, T. L., Cornick-Seahorn, J., Horohov, D. W., Moore, R. M. (1999): Plasma and urine nitric oxide concentrations in horses given a low dose of endotoxin. Am. J. Vet. Res., 60: 969–976
  12. [12] Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A., Carvalho, L. J. M. (2011): Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis., 203: 1454–1463. DOI: 10.1093/infdis/jir058 http://dx.doi.org/10.1093/infdis/jir05810.1093/infdis/jir058308088821415018
  13. [13] Cayatte, A. J., Palacino, J. J., Horten, K., Cohen, R. A. (1994): Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Tromb., 14: 753–759 http://dx.doi.org/10.1161/01.ATV.14.5.75310.1161/01.ATV.14.5.753
  14. [14] Cooke, J. P., Tsao, P. H. (1992): Cellular mechanisms of atherogenesis and the effects of nitric oxide. Curr. Opin. Cardiol., 7: 799–804 http://dx.doi.org/10.1097/00001573-199210000-0001310.1097/00001573-199210000-00013
  15. [15] Courderot-Masuyer, C., Dalloz, F., Maupoil, V., Rochette, L. (1999): Antioxidant properties of aminoguanidine. Fundam. Clin. Pharmacol., 13: 535–540. DOI: 10.1111/j.1472-8206.1999.tb00358.x http://dx.doi.org/10.1111/j.1472-8206.1999.tb00358.x10.1111/j.1472-8206.1999.tb00358.x
  16. [16] Dai, W. J., Gottstein, B. (1999): Nitric oxide - mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology, 97: 107–116. DOI: 10.1046/j.1365-2567.1999.00723.x http://dx.doi.org/10.1046/j.1365-2567.1999.00723.x10.1046/j.1365-2567.1999.00723.x
  17. [17] Dąbrowska, J., Walski, M., Grytner-Zięcina, B., Machnicka-rowińska, B., Dziemian, E., Jankowskasteifer, E. (2004): Ultrastructural analysis of capsule and nurse cell morphology examined seven months after Trichinella spiralis mouse infection (in Polish). Wiad. Parazytol., 50: 279–284
  18. [18] Derda, M., Hadaś, E. (2000): Antioxidants and proteolytic enzymes in experimental trichinellosis. Acta Parasitol., 45: 356–361
  19. [19] Derda, M., Wandurska-Nowak, E., Hadaś, E. (2004): Changes in the level of antioxidants in the blood from mice infected with Trichinella spiralis. Parasitol. Res., 93: 207–210. DOI: 10.1007/s00436-004-1093-9 http://dx.doi.org/10.1007/s00436-004-1093-910.1007/s00436-004-1093-9
  20. [20] Ding, A. H., Nathan, C. F., Stuehr, D. J. (1988): Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol., 141: 2407–2412 10.4049/jimmunol.141.7.2407
  21. [21] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2011): Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae. Parasitol. Res., 108: 169–176. DOI: 10.1007/s00436-010-2049-x http://dx.doi.org/10.1007/s00436-010-2049-x10.1007/s00436-010-2049-x
  22. [22] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2010): Kinetics of specific humoral immune response of mice infected with low doses of Trichinella spiralis, T. brotovi, and T. pseudospiralis larvae. Helminthologia, 47(3): 152–157. DOI: 10.2478/s11687-010-0023-x http://dx.doi.org/10.2478/s11687-010-0023-x10.2478/s11687-010-0023-x
  23. [23] Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z. (2005): Development of T-cell immune response in experimental murine trichinellosis. Helminthologia, 42: 187–196
  24. [24] Eisenstein, T. K., Huang, D., Meissler, J. J. Jr., Alramadi, B. (1994): Macrophage nitric oxide mediates immunosupression in infectious inflammation. Immunobiology, 191: 493–502. DOI: 10.1016/S0171-2985(11)80455-9 http://dx.doi.org/10.1016/S0171-2985(11)80455-910.1016/S0171-2985(11)80455-9
  25. [25] Faulkner, H., Humphreys, N., Renauld, J. C., van Snick, J., Grencis, R. (1997): Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol., 27: 2536–2540. DOI: 10.1002/eji.1830271011 http://dx.doi.org/10.1002/eji.183027101110.1002/eji.18302710119368607
  26. [26] Garside, P., Hutton, A. K., Severn, A., Liew, F. Y., Mc Mowat, A. I. (1992): Nitric oxide mediates intestinal pathology in graft-vs.-host disease. Eur. J. Immunol., 22: 2141–2145. DOI: 10.1002/eji.180220827 http://dx.doi.org/10.1002/eji.1830220827
  27. [27] Giardino, I., Fard, A. K., Hatchell, D. L., Brownlee, M. (1998): Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes, 47: 1114–1120. DOI: 10.2337/diabetes.47.7.1114 http://dx.doi.org/10.2337/diabetes.47.7.111410.2337/diabetes.47.7.11149648836
  28. [28] Granger, D. L., Hibbs, J. B. Jr., Broadnax, L. M. (1991): Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NGmonomethyl- L-arginine. J. Immunol., 146: 1294–1302
  29. [29] Griffiths, M. J. D., Messent, M., Mac Allister, R. J., Evans, T. W. (1993): Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br. J. Pharmacol., 110: 963–968 http://dx.doi.org/10.1111/j.1476-5381.1993.tb13907.x10.1111/j.1476-5381.1993.tb13907.x21758147507781
  30. [30] Gruden-Movsesijan, A., Sofronic-Milosavljevic, L. 2010): Experimental trichinellosis in rats - peritoneal macrophage activity. Arch. Biol. Sci. Belgrade, 62: 15–22. DOI: 10.2298/ABS1001015G http://dx.doi.org/10.2298/ABS1001015G10.2298/ABS1001015G
  31. [31] Helmby, H., Grencis, R. K. (2003): IFN-gammaindependent effects of IL-12 during intestinal nematode infection. J. Immunol., 171: 3691–3696
  32. [32] Hogaboam, C. M., Collins, S. M., Blennerhasset, M. G. 1996): Efectes of oral L-NAME during Trichinella spiralis infection in rats. Am. J. Physiol., 271: G338–G346 10.1152/ajpgi.1996.271.2.G338
  33. [33] James, S. L. (1995): Role of nitric oxide in parasitic infections. Microbiol. Rev. 59: 533–547
  34. [34] Karmańska, K., Houszka, M., Widyma, A., Stefaniak, E. 1997): Macrophages during infection with Trichinella spiralis in mice. Wiad. Parazytol., 43: 245–249
  35. [35] Khan, W. I., Vallance, B. A., Blennerhassett, P. A., Deng, Y., Verdu, E. F., Matthaei, K. I., Collins, S. M. 2001): Critical role for signal transducer and activator of transcription factor 6 in mediating intestinal muscle hypercontractility and worm expulsion in Trichinella spiralis-infected mice. Infect. Immun., 69: 838–844. DOI: 10.1128/IAI.69.2.838-844.2001 http://dx.doi.org/10.1128/IAI.69.2.838-844.200110.1128/IAI.69.2.838-844.2001
  36. [36] Kolb, H., Kolb-Bachofen, V. (1992): Nitric oxide: a pathogenic factor in autoimmunity. Immunol. Today, 13: 157–160. DOI: 10.1016/0167-5699(92)90118-Q http://dx.doi.org/10.1016/0167-5699(92)90118-Q10.1016/0167-5699(92)90118-Q
  37. [37] Kołodziej-Sobocińska, M., Dvorožňáková, E., Dziemian, E. (2006a): Trichinella spiralis: macrophage activity and antibody response in chronic murine infection. Exp. Parasitol., 112: 52–62. DOI: 10.1016/j.exppara.2005.09.004 http://dx.doi.org/10.1016/j.exppara.2005.09.00410.1016/j.exppara.2005.09.004
  38. [38] Kołodziej-Sobocińska, M., Dziemian, E., Machnickarowińska, B. (2006b): Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” C57BL/6) and “high responders” (BALB/c) mice. Parasitol. Res., 99: 194–196. DOI: 10.1007/s00436-006-0144-9 http://dx.doi.org/10.1007/s00436-006-0144-910.1007/s00436-006-0144-9
  39. [39] Kołodziej-sobocińska, M., Dvorožňáková, E., Dziemian, E., Machnicka-rowińska, B. (2007): Trichinella spiralis reinfection: macrophage activity in BALB/c mice. Parasitol. Res., 101: 629–637. DOI: 10.1007/s00436-007-0527-6 http://dx.doi.org/10.1007/s00436-007-0527-610.1007/s00436-007-0527-6
  40. [40] Liew, F. Y. (1993): The role of nitric oxide in parasitic diseases. Ann. Trop. Med. Parasitol., 87: 637–642
  41. [41] Liew, F.Y., Millott, S., Parkinson, C., Palmer, R.M., Moncada, S. (1990): Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J. Immunol., 144: 4794–4797
  42. [42] Liew, F. Y., Wei, X. Q., Proudfoot, L. (1997): Cytokines and nitric oxide as effector molecules against parasitic infections. Phil. Trans. R. Soc. Lond. B., 352: 1311–1315 http://dx.doi.org/10.1098/rstb.1997.011510.1098/rstb.1997.0115
  43. [43] Luss, H., Di Silvio, M., Litton, A. L., Molina, Y., Vedia, L., Nussler, A. K., Billiar, T. R. (1994): Inhibition of nitric oxide synthesis enhances the expression of inducible nitric oxide synthase mRNA and protein in a model of chronic liver inflammation. Biochem. Biophys. Res. Commun., 204: 635–640. DOI: 10.1006/bbrc.1994.2506 http://dx.doi.org/10.1006/bbrc.1994.250610.1006/bbrc.1994.2506
  44. [44] Luss, H., Li, R. K., Shapiro, R. A., Tzeng, E., Mc Gowan, F. X., Yoneyama, T., Hatakeyama, K., Geller, D. A., Mickle, D. A., Simmons, R. L., Billiar, T. R. (1997): Differentiated human ventricular cardiac myocytes express inducible nitric oxide synthase mRNA but not protein in response to IL-1, TNF, IFN-gamma, and LPS. J. Mol. Cell. Cardiol., 29: 1153–1165. DOI: 10.1006/jmcc.1996.0349 http://dx.doi.org/10.1006/jmcc.1996.034910.1006/jmcc.1996.0349
  45. [45] Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., Hill, A. M. (2000): M-1 / M-2 macrophages and the Th1/Th2 paradigm. J. Immunol., 164: 6166–6173
  46. [46] Misko, T. P., Moore, W. M., Kasten, T. P., Nickols, G. A., Corbett, J. A., Tilton, R. G., Mc Daniel, M. L., Williamson, J. R., Currie, M. G. (1993): Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol., 233: 119–125. DOI: 10.1016/0014-2999(93)90357-N http://dx.doi.org/10.1016/0014-2999(93)90357-N10.1016/0014-2999(93)90357-N
  47. [47] Morley, J. E., Flood, J. F. (1991): Evidence that nitric oxide modulates food intake in mice. Life Sci., 49: 707–711 http://dx.doi.org/10.1016/0024-3205(91)90102-H10.1016/0024-3205(91)90102-H
  48. [48] Olesen, J., Thomsen, L. L., Iversen, H. (1994): Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol. Sci., 15: 149–153. DOI: 10.1016/0165-6147(94)90075-2 http://dx.doi.org/10.1016/0165-6147(94)90075-210.1016/0165-6147(94)90075-2
  49. [49] Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C., Degraff, W., Friedman, N., Tsokos, M., Samuni, A., Mitchell, J. B. (1995): Nitric oxide potentates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med., 182: 1469–1479 http://dx.doi.org/10.1084/jem.182.5.146910.1084/jem.182.5.1469
  50. [50] Pacher, P., Beckman, J. S., Liaudet, L. (2007): Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 87: 315–424. DOI: 10.1152/physrev.00029.2006 http://dx.doi.org/10.1152/physrev.00029.200610.1152/physrev.00029.2006
  51. [51] Pick, E. (1986): Microassays for superoxide and hydrogen peroxide production and nitroblue tetrazolium reduction using an enzyme immunoassay microplate reader. Methods Enzymol., 132: 407–421. DOI: 10.1016/S0076-6879(86)32026-3 http://dx.doi.org/10.1016/S0076-6879(86)32026-310.1016/S0076-6879(86)32026-3
  52. [52] Rajan, T. V., Porte, P., Yates, J. A., Keefer, L., Shultz, L. D. (1996): Role of nitric oxide in host defense against extracellular metazoan parasite Brugia malayi. Infect. Immun., 64: 3351–3353
  53. [53] Reiterová, K., Dubinský, P., Klimenko, V.V., Tomašovičová, O., Dvorožňáková, E. (1999): Comparison of Trichinella spiralis larva antigens for the detection of specific antibodies in pigs. Veterinarni Med., 44 1): 1–5
  54. [54] Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. Ch., Shi, Y. (2008): Mesenchymal stem cellmediated immunosupression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2: 141–150. DOI: 10.1016/j.stem.2007.11.014 http://dx.doi.org/10.1016/j.stem.2007.11.01410.1016/j.stem.2007.11.014
  55. [55] Rockett, K. A., Awburn, M. M., Rockett, E. J., Cowden, W. B., Clark, I. A. (1994): Possible role of nitric oxide in malarial immunosuppression. Parasite Immunol., 16: 243–249. DOI: 10.1111/j.1365-3024.1994.tb00346.x http://dx.doi.org/10.1111/j.1365-3024.1994.tb00346.x10.1111/j.1365-3024.1994.tb00346.x
  56. [56] Shanta, C. S., Meerovich, E. (1967): The life cycle of Trichinella spiralis. II. The muscle phase of development and its possible evolution. Can. J. Zool., 45: 1261–1267
  57. [57] Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M., Agarwal, S. S. (2000): Modulation of autoimmune diseases by nitric oxide. Immunol. Res., 22: 1–19. DOI: 10.1385/IR:22:1:1 http://dx.doi.org/10.1385/IR:22:1:110.1385/IR:22:1:1
  58. [58] Urban, J. F., Schopf, L., Morris, S. C., Orekhova, T., Madden, K. B., Betts, C. J., Gamble, H. R., Byrd, C., Donaldson, D., Else, K., Finkelman, F. D. (2000): Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. J. Immunol., 164: 2046–2052
  59. [59] Wandurska-nowak, E., Wiśniewska, J. (2002): Release of nitric oxide during experimental trichinellosis in mice. Parasitol. Res., 88: 708–711. DOI: 10.1007/s00436-002-0631-6 http://dx.doi.org/10.1007/s00436-002-0631-610.1007/s00436-002-0631-612107466
  60. [60] Zeballos, G. A., Bernstein, R. D., Thompson, C. I., Forfia, P. R., Seyedi, N., Shen, W., Kaminski, P. M., Wolin, M. S., Hintze, t. H. (1995): Pharmacodynamics of plasma nitrate/nitrite as an indicator of nitric oxide formation in conscious dogs. Circulation, 91: 2982–2988 http://dx.doi.org/10.1161/01.CIR.91.12.298210.1161/01.CIR.91.12.29827796509
  61. [61] Zhu, L., Gunn, C., Beckman, J. S. (1992): Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys., 298: 452–457. DOI: 10.1016/0003-9861(92)90434-X http://dx.doi.org/10.1016/0003-9861(92)90434-X10.1016/0003-9861(92)90434-X
DOI: https://doi.org/10.2478/s11687-012-0038-6 | Journal eISSN: 1336-9083 | Journal ISSN: 0440-6605
Language: English
Page range: 189 - 200
Published on: Nov 6, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 M. Kołodziej-Sobocińska, B. Machnicka-Rowińska, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.