Have a personal or library account? Click to login
Genetic markers to gastrointestinal nematode resistance in sheep: a review Cover

Genetic markers to gastrointestinal nematode resistance in sheep: a review

By: A. Krawczyk and  E. Słota  
Open Access
|Apr 2009

References

  1. [1] Albers, G. A. A., Gray, G. D., Piper, L. R., Barker, J. S. F., Le Jambre, L. F., Barger, I. A. (1987): The genetics of resistance and resilience to Haemonchus contortus infection in young Merino sheep. Int. J. Parasitol., 17: 1355–1363 http://dx.doi.org/10.1016/0020-7519(87)90103-210.1016/0020-7519(87)90103-2
  2. [2] Amarante, A. F. T., Bricarello, P. A., Huntley, J. F., Mazzolin, L. P., Gomes, J. C. (2005): Relationship of abomasal histology and parasite-specific immunoglobulin A with the resistance to Haemonchus contortus infection in three breeds of sheep. Vet. Parasitol., 128: 99–107 http://dx.doi.org/10.1016/j.vetpar.2004.11.02110.1016/j.vetpar.2004.11.021
  3. [3] Amarante, A. F. T., Bricarello, P. A., Rocha, R. A., Gennari, S. M. (2003): Resistance of Santa Ines, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Vet. Parasitol., 120: 91–106 http://dx.doi.org/10.1016/j.vetpar.2003.12.00410.1016/j.vetpar.2003.12.004
  4. [4] Amarante, A. F. T., Craig, T. M., Ramsey, W. S., Davis, S. K., Bazer, F. W. (1999): Nematode burdens and cellular responses in the abomasal mucosa and blood of Florida Native, Rambouillet and crossbreed lambs. Vet. Parasitol., 80: 311–324 http://dx.doi.org/10.1016/S0304-4017(98)00229-510.1016/S0304-4017(98)00229-5
  5. [5] Amills, M., Ramiya, V., Norimine, J., Lewin, H. A. (1998): The major histocompatibility complex of ruminants. Rev. Sci. Tech., 17: 108–120
  6. [6] Anderson, L., Rask, L. (1998): Characterisation of the MHC class II region in cattle: The number of DQ genes varies between genotypes. Immunogenetics, 27: 110–120 http://dx.doi.org/10.1007/BF0035108410.1007/BF00351084
  7. [7] Baker, R. L., Watson, T. G., Bisset, S. A., Vlassoff, A., Douch, P. G. C. (1991): Breeding sheep in New Zealand for resistance to internal parasites: research results and commercial applications. In: Gray G. D. & Woolaston R. R. (Eds) Breeding for disease resistance in Sheep. Australian Wool Corporation, Melbourne, 19–32
  8. [8] Baker, R. L., Mwamachi, D. M., Audho, J. O., Aduda, E. O., Thorpe, W. (1999): Genetic resistance to gastrointestinal nematode parasites in Red Maasai, Dorper and Red Massai x Dorper ewes in the sub-humid tropics. Anim. Sci., 69: 335–344
  9. [9] Barger, I. A., Dash, K. M. (1987): Repeatability of ovine fecal egg counts and blood packed cell volumes in Haemonchus contortus infections. Int. J. Parasitol., 17: 977–980 http://dx.doi.org/10.1016/0020-7519(87)90018-X10.1016/0020-7519(87)90018-X
  10. [10] Beh, K. J., Hulme, D. J., Callaghan, M. J., Leish, Z., Lenane, I., Windon, R. G., Maddox J. F. (2002): A genome scan for guantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep. Anim. Genet., 33:97–106 http://dx.doi.org/10.1046/j.1365-2052.2002.00829.x10.1046/j.1365-2052.2002.00829.x
  11. [11] Bekele, T., Kasali, O. B., Rege, J. (1991): Repeatability of measurements of packed cell volume and egg count as indicators of endoparasite load and their relationship with sheep productivity. Acta Trop., 50: 151–160 http://dx.doi.org/10.1016/0001-706X(91)90008-810.1016/0001-706X(91)90008-8
  12. [12] Benavides, M. V., Weimer, T. A., Borba, M. F. S., Berne, M. E. A., Sacco, A. M. S. (2002): Association between microsatellite markers of sheep chromosome 5 and faecal egg counts. Small Rumin. Res., 46: 97–105 http://dx.doi.org/10.1016/S0921-4488(02)00198-010.1016/S0921-4488(02)00198-0
  13. [13] Bisset, S. A., Vlassoff, A., Morris, C. A., Southey, B. R., Baker, R. L., Parker, A. G. H. (1992): Heritability and genetic correlations among faecal egg counts and productivity traits in Romney sheep. N. Z. J. Agric. Res., 35: 51–58
  14. [14] Blader, I. J., Manger, I. D., Boothroyd, J. C. (2001): Microarray analysis previously unknown changes in Toxoplasma gongii-infected human cells. J. Biol. Chem., 26:24223–24231 http://dx.doi.org/10.1074/jbc.M10095120010.1074/jbc.M10095120011294868
  15. [15] Boothroyd, J. C., Blader, I., Cleary, M., Singh, U. (2003): DNA microarrays in parasitology: strengths and limitations. Trends Parasitol., 19: 470–476 http://dx.doi.org/10.1016/j.pt.2003.08.00210.1016/j.pt.2003.08.002
  16. [16] Bouix, J., Krupiński, J., Rzepecki, R., Nowosad, B., Skrzyzala, I., Roborzynski, M., Fudalewicz-Niemczyk, W., Skalska, M., Malczewski, A., Gruner, L. (1998): Genetic resistance to gastrointestinal nematode parasites In Polish long-wool sheep. Int. J. Parasitol., 28:1797–1804 http://dx.doi.org/10.1016/S0020-7519(98)00147-710.1016/S0020-7519(98)00147-7
  17. [17] Buitkamp, J., Filmether, P., Stear, M. J., Epplen, J. T. (1996): Class I and class II Major histocompatibility complex alleles are associated with faecal egg counts following natural, predominantly Ostertargia circumcincta infection. Parasitol. Res., 82: 693–696 http://dx.doi.org/10.1007/s00436005018710.1007/s004360050187
  18. [18] Charon, K. M., Moskwa, B., Gruszczyńska, J., Kurył, J., Pierzchała, M., Rutkowski, R. (2001): Realationship between polymorphism in locus OMHC1 (MHC class I) and resistance to nematodes in Polish Heatherhead Sheep. Anim. Sci. Pap. Rep., 19: 285–292
  19. [19] Charon, K. M., Moskwa, B., Nowak, Z., Szydłowski, M. (2000): Genetic parameters for faecal egg count following natural nematode infections and correlation with productive traits in Polish Heath Sheep. J. Anim. Feed Sci., 9: 461–470 10.22358/jafs/68065/2000
  20. [20] Charon, K. M., Moskwa, B., Rutkowski, R., Gruszczyńska, J., Świderek, W. (2002): Microsatellite polymorphism in DRB1 gene (MHC class II) and its relation to nematode faecal egg count in Polish Heath Sheep. J. Anim. Feed Sci., 11: 47–58 10.22358/jafs/68105/2002
  21. [21] Coltman, D. W., Wilson, K., Pilkington, J. G., Stear, M. J., Pemberton, J. M. (2001): A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology, 122:571–582 http://dx.doi.org/10.1017/S003118200100757010.1017/S0031182001007570
  22. [22] Cooper, D. W., Van Oorschot, R. A. H., Piper, L. R., Le Jambre, L. F. (1989): No association between the ovine leukocyte antigen (OLA) system in the Australian Merino and susceptibility to Haemonchus contortus infestation. Int. J. Parasitol., 15: 101–109
  23. [23] Crawford, A. M., McEwan, J. C., Dodds, K. G., Wright, C. S., Bisset, S. A., Macdonald, P. A., Knowler, K. J., Greer, G. J., Green, R. S., Shaw, R. J., Paterson, K. A., Cuthbertson, R. P., Vlassoff, A., Squire, D. R., West, C. J., Phua, S. H. (1997): Proceedings of the 12th Conference on Resistance to Nematode Parasites in Sheep. Part 1. Dubbo, NSW, Australia, 58–62
  24. [24] Crawford, A. M., Paterson, K. A., Dodds, K. G., Dieztascon, C., Williamson, P. A., Roberts Thomson, M., Bisset, S. A., Beattie, A. E., Greer, G. J., Green, R. S., Wheeler, R., Shaw, R. J., Knowler, K., McEwan, J. C. (2006): Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics, 7: 178 http://dx.doi.org/10.1186/1471-2164-7-17810.1186/1471-2164-7-178
  25. [25] Davis, G., Stear, M. J., Benothman, M., Abuagob, O., Kerr, A., Mitchell, S., Bishop, S. C. (2006): Quantitative trait loci associated with parasitic infection in Scottish Blackface sheep. Heredity, 96: 252–258 http://dx.doi.org/10.1038/sj.hdy.680078810.1038/sj.hdy.6800788
  26. [26] Diez-Tascon, Ch., Keane, O. M., Wilson, T., Zadissa, A., Hyndman, D. L., Baird, D. B., McEwan, J., Crawford, A. M. (2005): Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol. Gen., 21: 59–69 http://dx.doi.org/10.1152/physiolgenomics.00257.200410.1152/physiolgenomics.00257.2004
  27. [27] Doligalska, M., Moskwa, B., Niznikowski, R. (1997): The repeatability of faecal egg counts in Polish Wrzosówka sheep. Vet. Parasitol., 70: 241–246 http://dx.doi.org/10.1016/S0304-4017(96)01151-X10.1016/S0304-4017(96)01151-X
  28. [28] Doligalska, M., Moskwa, B., Stear, M. J. (1999): Relationship among peripheral eosinophil peroxidase activity, interleukin-5 concentration and faecal nematode egg count during natural, mixed gastrointestinal nematode infection. Vet. Immunol. Immunopathol., 70: 299–308 http://dx.doi.org/10.1016/S0165-2427(99)00078-110.1016/S0165-2427(99)00078-1
  29. [29] Dominik, S. (2005): Qantitive trait loci for internal nematode resistance in sheep: a review. Genet. Sel. Evol., 37: 83–96 http://dx.doi.org/10.1051/gse:200402710.1186/1297-9686-37-S1-S83
  30. [30] Douch, P. G. C., Green, R. S., Morris, C. A., McEewan, L. C., Windon, R. G. (1996): Phenotypic markers for selection of nematode-resistance sheep. Int. J. Parasitol., 26, 899–911 http://dx.doi.org/10.1016/S0020-7519(96)80062-210.1016/S0020-7519(96)80062-2
  31. [31] Dukkipati, V. S. R., Blair, H. T., Garrick, D. J., Murray, A. (2006): Ovar-MHC — ovine major histocopatibility complex: structure and gene polymorfisms. Genet. Mol. Res., 5: 581–608
  32. [32] Eady, S. J., Woolaston, R. R., Mortimer, S. I., Lewer, R. P., Raadsma, H. W., Swan, A. A., Ponzoni, R. W. (1996): Resistance to nematode parasites in Merino sheep: sources of genetic variation. Aust. J. Agric. Res., 47: 895–915 http://dx.doi.org/10.1071/AR996089510.1071/AR9960895
  33. [33] Else, K. J., Finkelman, F. D. (1998): Intestinal nematode parasites, cytokines and effector mechanisms. Int. J. Parasitol., 28: 1145–1158 http://dx.doi.org/10.1016/S0020-7519(98)00087-310.1016/S0020-7519(98)00087-3
  34. [34] Escayg, A. P., Hickford, J. G. H., Motgomery, G. W., Dodds, K. G., Bullock, D. W. (1996): Polymorphism at the ovine major histocompatibility complex class II loci. Anim. Genet., 27: 305–312 http://dx.doi.org/10.1111/j.1365-2052.1996.tb00974.x10.1111/j.1365-2052.1996.tb00974.x
  35. [35] Fabb, S. A., Maddox, J. F., Gogolin-Ewens, K. J., Baker, L., Wu, M. J., Brandod, M. R. (1993): Isolation, characterization and evolution of ovine major histocomatibility complex class II DRA and DQA genes. Anim. Genet., 24: 249–255
  36. [36] Gamble, H. R., Zajac, A. M. (1992): Resistance of St. Croix lambs to Haemonchus contortus in experimentally and naturally acquired infections. Vet. Parasitol., 41: 211–225 http://dx.doi.org/10.1016/0304-4017(92)90081-J10.1016/0304-4017(92)90081-J
  37. [37] Gause, W. C., Urban, Jr., Stadecker, M. J. (2003): The immune response to parasitic helminthes: insights from murine models. Trends Immunol., 24: 269–277 http://dx.doi.org/10.1016/S1471-4906(03)00101-710.1016/S1471-4906(03)00101-7
  38. [38] Gruszczyńska, J., Brokowska, K., Charon, K. M., Świderek, W. P. (2005): Restriction fragment length polymorphism of exon 2 Ovar-DRB1 gene in Polish Heath Sheep and Polish Lowland Sheep. J. Appl. Genet., 46: 311–314
  39. [39] Gruszczyńska, J., Charon, K. M., Świderek, W., Sawera, M. (2002): Microsatellite polymorphism in locus OMHC1 (MHC Class I) in Polish Heath Sheep and Polish Lowland Sheep (Żelazna variety). J. Appl. Genet., 43: 217–222
  40. [40] Hediger, R., Ansari, H. A., Stranzinger, G. F. (1991): Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. Cytogenet. Cell Genet., 57: 127–134 http://dx.doi.org/10.1159/00013313110.1159/0001331311717202
  41. [41] Henderson, N. G., Stear, M. J. (2006): Eosinophil and IgA responses in sheep infected with Teladorsagia circumcincta. Vet. Immunol. Immunopathol., 112: 62–66 http://dx.doi.org/10.1016/j.vetimm.2006.03.01210.1016/j.vetimm.2006.03.01216684572
  42. [42] Kaufman, J., Salomonsen, J., Flajnik, M. (1994): Evolutionary conservation of MHC class I and class II molecules — different yet the same. Semin. Immunol., 6: 411–424 http://dx.doi.org/10.1006/smim.1994.105010.1006/smim.1994.1050
  43. [43] Keane, O. M., Dodds, K. G., Crawford, A. M., McEwan, J. C. (2007): Transcripstional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode resistant and susceptible selection lines. Press. Physiol. Genomics., 30: 253–261 http://dx.doi.org/10.1152/physiolgenomics.00273.200610.1152/physiolgenomics.00273.2006
  44. [44] Maizels, R. M., Bundy, D. A. P., Selkirk, M. E., Smith, D. F., Anderson, R. M. (1993). Immunological modulation and evasion by helminth parasites in human populations. Nature, 365: 797–805 http://dx.doi.org/10.1038/365797a010.1038/365797a0
  45. [45] McEwan, J. C., Mason, P., Baker, R. L., Clarke, J. N., Hickey, S. M., Turner, K. (1992): Effect of selection for productive traits on internal parasite resistance in sheep. Proc. N. Z. Soc. Anim. Prod., 52: 53–56
  46. [46] Meeusen, E. N. T., Balic, A., Bowles, V. (2005): Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Vet. Immunol. Immunopathol., 108: 121–125 http://dx.doi.org/10.1016/j.vetimm.2005.07.00210.1016/j.vetimm.2005.07.002
  47. [47] Morris, C. A., Vlassoff, A., Bissett, S. A., Baker, R. L., West, C. J., Hurford, A. P. (1997): Responses of Romney sheep to selection for resistance or susceptibility of nematode infection. Anim. Sci., 64: 319–329
  48. [48] Moskwa, B. (1999a): The imune response against gastrointestinal nematodes in naturally infected Polish Wrzosówka sheep. I. The serum IgG response to Haemonchus contortus in ewes over three grazing seasons. Acta Parasitol., 44: 266–273
  49. [49] Moskwa, B. (1999b): The immune response against gastrointestinal nematodes in naturally infected Polish Wrzosówka sheep. II. The serum IgG response to nematode somatic antigens in young ewes over three grazing seasons. Acta Parasitol., 44: 274–280
  50. [50] Moskwa, B., Doligalska, M., Cabaj, W. (1998): The repeatability of haematological and parasitological parameters in Polish Wrzosówka hoggets naturally infected with Trichostrongylid nematodes. Acta Parasitol., 43: 148–153
  51. [51] Mugambi, J., Audho, J., Baker, R. (2005): Evaluation of the phenotypic performance of a Red Maasai and Dorper double backcross resource population: natural pasture challenge with gastro-intestinal nematode parasites. Vet. Parasitol., 127: 263–275 http://dx.doi.org/10.1016/j.vetpar.2004.10.01710.1016/j.vetpar.2004.10.017
  52. [52] Nowosad, B., Skalska, M., Molenda, K., Węglarzy, K., Kornaś, S. (2005). A comparative study of gastrointestinal nematode infections in different breeds of sheep. Part I — Ewes (only in Polish). Roczniki Naukowe Zootechniki, Supplement, 22: 295–298
  53. [53] Nowosad, B., Skalska, M., Molenda, K., Węglarzy, K., Kornaś, S. (2005b). A comparative study of gastrointestinal nematode infections in different breeds of sheep. Part II — Lambs (only in Polish). Roczniki Naukowe Zootechniki, Supplement, 22: 295–298
  54. [54] Pernthaner, A., Shaw, R. J., McNeill, M. M., Morrison, L., Hein, W. R. (2005): Total and nematode-specific IgE responses in intestinal lymph of genetically resistant and susceptible sheep during infection with Trichostrongylus colubriformis. Vet. Immunol. Immunopathol., 104: 69–80 http://dx.doi.org/10.1016/j.vetimm.2004.10.00810.1016/j.vetimm.2004.10.008
  55. [55] Schwaiger, F. W., Gostomski, D., Stear, M. J., Duncan, J. L., Mckellar, Q. A., Epplen, J. T., Buitkamp, J. (1995): An ovine major histocompatibility complex DRB1 allele is associated with low faecal egg counts following natural, predominantly Ostertargia circumcincta infection. Int. J. Parasitol., 25: 815–822 http://dx.doi.org/10.1016/0020-7519(94)00216-B10.1016/0020-7519(94)00216-B
  56. [56] Stear, M. J., Bairden, K., Bishop, S. C., Buitkamp, J., Epplen, J. T., Gostomski, D., McKellar, Q. A., Schwaiger, F. W., Wallace, D. S. (1996): An ovine lymphocyte antigen is associated with reduced faecal egg counts in four-month-old lambs following natural, predominantly Ostertargia circumcincta infection. Int. J. Parasitol., 26: 423–428 http://dx.doi.org/10.1016/0020-7519(96)00002-110.1016/0020-7519(96)00002-1
  57. [57] Stear, M. J., Henderson, N. G., Kerr, A., Mckellar, Q. A., Mitchell, S., Seeley, C., Bishop, S. C. (2002): Eosinophilia as marker of resistance to Teladorsagia circumcincta in Scottish Blackface lambs. Parasitology, 124: 553–560 http://dx.doi.org/10.1017/S003118200200158010.1017/S0031182002001580
  58. [58] Stear, M. J., Innocent, G. T., Buitkamp, J. (2005): The evolution and maintenance of polymorphism in the major histocompatibility complex. Vet. Immunopathol., 108: 53–57 http://dx.doi.org/10.1016/j.vetimm.2005.07.00510.1016/j.vetimm.2005.07.00516099055
  59. [59] Stear, M. J., Strain, S., Bishop, S. C. (1999): Mechanisms underlying resistance to nematode infection. Int. J. Parasitol., 29: 51–56 http://dx.doi.org/10.1016/S0020-7519(98)00179-910.1016/S0020-7519(98)00179-9
  60. [60] Strain, S. A. J., Stear, M. J. (2001): The influence of protein supplementation on the immune response to Haemonchus contortus. Parasitol. Immunol., 23: 527–531 http://dx.doi.org/10.1046/j.1365-3024.2001.00410.x10.1046/j.1365-3024.2001.00410.x11696163
  61. [61] Vanimisetti, H. B., Andrew, S. L., Zajac, A. M., Notter, D. R. (2004). Inheritance of fecal egg count and packed cell volume and their relationship with production traits in sheep infected with Haemonchus. J. Anim. Sci., 82: 1602–1611 10.2527/2004.8261602x15216985
  62. [62] Watson, T. G., Baker, R. L., Harvey, T. G. (1986): Genetic variation in resistance or tolerance to internal nematode parasites in strains of sheep at Rotomahana. Proc. N. Z. Soc. Anim. Prod., 46: 23–26
  63. [63] Wetherall, J. D., Groth, D. M., Karlsson, L. J. E. (1991): DNA markers and parasite resistance in sheep: complement and major histocompatibility complex associations. Wool Res. Dev. Corp., 109–114
DOI: https://doi.org/10.2478/s11687-009-0001-3 | Journal eISSN: 1336-9083 | Journal ISSN: 0440-6605
Language: English
Page range: 3 - 8
Published on: Apr 25, 2009
Published by: Slovak Academy of Sciences, Institute of Parasitology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 A. Krawczyk, E. Słota, published by Slovak Academy of Sciences, Institute of Parasitology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.