References
- Velenturf A. P. M., Jopson J. S. Making the business case for resource recovery. Science of The Total Environment 2019:648:1031–1041. https://doi.org/10.1016/j.scitotenv.2018.08.224
- Torres M. D., Kraan S., Domínguez H. Seaweed biorefinery. Rev Environ Sci Biotechnol 2019:18(2):335–388. https://doi.org/10.1007/s11157-019-09496-y
- Balina K., Romagnoli F., Blumberga D. Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 2017:128:504–511. https://doi.org/10.1016/j.egypro.2017.09.067
- van Hal J. W., Huijgen W. J. J., López-Contreras A. M. Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol 2014:32(5):231–233. https://doi.org/10.1016/j.tibtech.2014.02.007
- Romagnoli F. et al. Furcellaria lumbricalis macroalgae cascade biorefinery: a Life Cycle Assessment study in the Baltic Sea Region. J Clean Prod 2024:478:143861. https://doi.org/10.1016/j.jclepro.2024.143861
- EU. EU4Algae. European Union. [Online]. [Accessed 11.03.2025]. Available: https://maritime-forum.ec.europa.eu/theme/blue-economy-and-fisheries/blue-economy/eu4algae_en
- Kersen P., Paalme T., Pajusalu L., Martin G. Biotechnological applications of the red alga Furcellaria lumbricalis and its cultivation potential in the Baltic Sea. Botanica Marina 2017:60(2). https://doi.org/10.1515/bot-2016-0062
- Pantis A., Nikoloudakis C., Tsoutsos T. A Critical Review of Macroalgae Exploitation Pathways Implemented under the Scope of Life Cycle Assessment. ChemEngineering 2024:8(4):74. https://doi.org/10.3390/chemengineering8040074
- Sudhakar K., Mamat R., Samykano M., Azmi W. H., Ishak W. F. W., Yusaf T. An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews 2018:91:165–179. https://doi.org/10.1016/j.rser.2018.03.100
- Soares Dias A. P., Rijo B., Santos F., Galhano dos Santos R., Frade T. Overview on biofuels production in a seaweed biorefinery. Science of The Total Environment 2023:884:163714. https://doi.org/10.1016/j.scitotenv.2023.163714
- Baghel R. S. Developments in seaweed biorefinery research: A comprehensive review. Chemical Engineering Journal 2023:454:140177. https://doi.org/10.1016/j.cej.2022.140177
- Johnston K. G., Abomohra A., French C. E., Zaky A. S. Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage. Sustainability 2023:15(17):13193. https://doi.org/10.3390/su151713193
- Paoli R., Feofilovs M., Kamenders A., Romagnoli F. Peat production for horticultural use in the Latvian context: sustainability assessment through LCA modelling. J Clean Prod 2022:378:134559. https://doi.org/10.1016/j.jclepro.2022.134559
- Ubando A. T., Anderson S. Ng. E., Chen W.-H., Culaba A. B., Kwon E. E. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. Bioresour Technol 2022:360:127615. https://doi.org/10.1016/j.biortech.2022.127615
- Baltrocchi A. P. D. et al. Assessment of environmental sustainability of drinking water treatments for arsenic removal. Resour Conserv Recycl 2024:211:107878. https://doi.org/10.1016/j.resconrec.2024.107878
- Baltrocchi A. P. D., Ferronato N., Calle Mendoza I. J., Gorritty Portillo M. A., Romagnoli F., Torretta V. Socioeconomic analysis of waste-based briquettes production and consumption in Bolivia. Sustain Prod Consum 2023:37:191–201. https://doi.org/10.1016/j.spc.2023.03.004
- Vance C., Sweeney J., Murphy F. Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems. Renewable and Sustainable Energy Reviews 2022:159:112259. https://doi.org/10.1016/j.rser.2022.112259
- Martínez-Blanco J. et al. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J Clean Prod 2014:69:34–48. https://doi.org/10.1016/j.jclepro.2014.01.044
- Wu R., Yang D., Chen J. Social Life Cycle Assessment Revisited. Sustainability 2014:6(7):4200–4226. https://doi.org/10.3390/su6074200
- Santos D. S. et al. Multi-purpose biorefineries and their social impacts: a systematic literature review. Environ Dev Sustain 2023:26(5):10865–10925. https://doi.org/10.1007/s10668-023-03445-0
- Vance C., Pollard P., Maguire J., Sweeney J., Murphy F. Sustainable scale-up of Irish seaweed production: Quantifying potential environmental, economic, and social impacts of wild harvesting and cultivation pathways. Algal Res 2023:75:103294. https://doi.org/10.1016/j.algal.2023.103294
- ISO. ISO 14075:2024. Environmental management – Principles and framework for social life cycle assessment. 2024. [Online]. [Accessed 11.03.2025]. Available: https://www.iso.org/standard/61118.html
- Benoît Norris C. et al. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020. 2020.
- Traverso M. et al. Methodological Sheets for Subcategories in Social Life Cycle Assessment (S-LCA ) 2021. 2021.
- Aristizábal-Marulanda V., Solarte-Toro J. C., Cardona Alzate C. A. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia. Bioresour Technol Rep 2020:9:100397. https://doi.org/10.1016/j.biteb.2020.100397
- Schaidle J. A., Moline C. J., Savage P. E. Biorefinery sustainability assessment. Environ Prog Sustain Energy 2011:30(4):743–753. https://doi.org/10.1002/ep.10516
- Spillias S. et al. The empirical evidence for the social-ecological impacts of seaweed farming. PLOS Sustainability and Transformation 2023:2(2):e0000042. https://doi.org/10.1371/journal.pstr.0000042
- Paoli R., Foiadelli C., Traversi M., Tomasoni G., Romagnoli F. Economic Feasibility of Furcellaria lumbricalis Biorefinery Designs: A Life Cycle Cost Approach. 2025. https://doi.org/10.2139/ssrn.5153254
- Bue Bio CoFund. TACO ALGAE. Total Value Chain Optimization of seaweeds Furcellaria lumbricalis, A bioeconomical ALGAE demonstration. [Online]. [Accessed 08.03.2025]. Available: https://bluebioeconomy.eu/total-value-chain-optimization-of-seaweeds-furcellaria-lumbricalis-a-bioeconomical-algae-demonstration/
- Ardolino F., Palladini A., Arena U. Social life cycle assessment of innovative management schemes for challenging plastics waste. Sustain Prod Consum 2023:37:344–355. https://doi.org/10.1016/j.spc.2023.03.011
- Hwang C.-L., Yoon K. Multiple Attribute Decision Making, vol. 186. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. https://doi.org/10.1007/978-3-642-48318-9
- Heidari A., Boleydei H., Rohani A., Lu H. R., Younesi H. Integrating life cycle assessment and life cycle costing using TOPSIS to select sustainable biomass-based -carbonaceous adsorbents for CO2 capture. J Clean Prod 2022:357:131968. https://doi.org/10.1016/j.jclepro.2022.131968
- The European Green Deal – European Commission. [Online]. [Accessed 02.04.2025]. Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
- European Commission. First circular economy action plan. Environment. [Online]. [Accessed 12.12.2025. Available: https://environment.ec.europa.eu/topics/circular-economy-topics/first-circular-economy-action-plan_en
- European Skills Agenda – Employment, Social Affairs and Inclusion. [Online]. [Accessed 12.12.2025]. Available: https://employment-social-affairs.ec.europa.eu/policies-and-activities/skills-and-qualifications/european-skills-agenda_en