Have a personal or library account? Click to login
Life Cycle Assessment of Peat Extraction Towards Peat-bog Reconversion Strategies: Scenarios Comparison Based on a Real Case Study from a Latvian Peat Extraction Factory Cover

Life Cycle Assessment of Peat Extraction Towards Peat-bog Reconversion Strategies: Scenarios Comparison Based on a Real Case Study from a Latvian Peat Extraction Factory

Open Access
|Jan 2026

References

  1. Belyea L. R., Malmer N. Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Chang Biol 2004:10(7):1043–1052. https://doi.org/10.1111/j.1529-8817.2003.00783.x
  2. Quinty F., Rochefort L. Peatland Restoration Guide Second Edition. 2003. [Online]. [Accessed 20.10.2025]. Available: www.peatmoss.com
  3. Abdul Malak D., Marín A. I., Trombetti M., San Román S. Carbon pools and sequestration potential of wetlands in the European Union European Topic Centre on Urban, Land and Soil Systems. 2021. [Online]. [Accessed 20.10.2025]. Available: www.blueverdestudio.com
  4. Joosten H. Global guidelines for peatland rewetting and restoration. 2022. [Online]. [Accessed 20.10.2025]. Available: https://www.researchgate.net/publication/359773792
  5. Paoli R., Feofilovs M., Kamenders A., Romagnoli F. Peat production for horticultural use in the Latvian context: sustainability assessment through LCA modelling. Journal of Cleaner Production 2022:378:134559. https://doi.org/10.1016/j.jclepro.2022.134559
  6. Jarašius L. et al. Handbook for Assessment of Greenhouse Gas Emissions from Peatlands. 2022.
  7. Höper H., Augustin J., Drösler M., Lundin L. Restoration of peatlands and greenhouse gas balances. 2008. [Online]. [Accessed: 20.10.2025]. Available: https://www.researchgate.net/publication/37792364
  8. Mäkilä M., Saarnisto M. Carbon accumulation in boreal peatlands during Holocene – impacts of climate variations. In Peatlands and climate change, 1st ed., M. Strack, Ed., 2008.
  9. Jarnehammar A., Höglund J., Martinsson F. Comparative review of variations in LCA results and peatland emissions from energy peat utilisation. 2013. [Online]. [Accessed 20.10.2025]. Available: www.ivl.se
  10. Persevica A., Konstantinova E., Brunina L. After-use of post-harvested peatlands and restoration of the raised bog: assessing the economic value of Ecosystem services. In Sustainable management of degraded peatlands and climate change mitigation, Life restore project international closing conference 2019:62–64. https://doi.org/10.17770/etr2019vol1.4109
  11. Noebel R. Why is peatland rewetting critical for meeting EU environmental objectives? 2023. [Online]. [Accessed 20.10.2025]. Available: https://cinea.ec.europa.eu/news-
  12. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869. 2024. Official Journal of the European Union L 2024/1991.
  13. Priede A., Gancone A. Sustainable and responsible after-use of peat extraction areas. Riga: Baltijas krasti, 2019.
  14. Petersons J. Establishment of highbush blueberry Vaccinium corymbosum and large cranberry Vaccinium macrocarpon plantations in peatlands degraded by peat extraction. In Sustainable management of degraded peatlands and climate change mitigation. Life restore project international closing conference. 2019:64–66.
  15. Montanarella L., Jones R. J. A., Hiederer R. The distribution of peatland in Europe. [Online]. [Accessed 20.10.2025]. [Online]. Available: http://www.mires-and-peat.net, https://doi.org/10.19189/001c.130870
  16. Latvian Peat Association, “Peat Extraction: Peat.” [Online]. [Accessed 20.10.2025]. Available: https://www.latvijaskudra.lv/en/Interesting_information/peat_extraction/
  17. Sloan T. J. et al. Potential for large losses of carbon from non-native conifer plantations on deep peat over decadal timescales. Science of the Total Environment 2024:953. https://doi.org/10.1016/j.scitotenv.2024.175964
  18. Kolari P., Pumpanen J., Rannik Ü., Ilvesniemi H., Hari P., Berninger F. Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology 2004:10(7):1106–1119. https://doi.org/10.1111/j.1529-8817.2003.00797.x
  19. Ministero delle Politiche Agricole Alimentari e Forestali, Determinazione dei consumi medi dei prodotti petroliferi impiegati in lavori agricoli, orticoli, in allevamento, nella 78 silvicoltura e piscicoltura e nelle coltivazioni sotto serra ai fini dell’applicazione delle aliquote o dell’esenzione dell’accisa (Ministry of Agricultural, Food and Forestry Policies, Determination of the average consumption of petroleum products used in agricultural, horticultural, livestock farming, forestry, fish farming and greenhouse cultivation for the purposes of applying excise duty rates or exemptions). 2014. (In Italian).
  20. Wang X. et al. Benefits and trade-offs of replacing inorganic fertilizer by organic substrate in crop production: A global meta-analysis. Science of The Total Environment 2024:925:171781. https://doi.org/10.1016/j.scitotenv.2024.171781
  21. Mdallal A., Yasin A., Mahmoud M., Abdelkareem M. A., Alami A. H., Olabi A. G. A comprehensive review on solar photovoltaics: Navigating generational shifts, innovations, and sustainability. Sustainable Horizons 2025:13:100137. https://doi.org/10.1016/j.horiz.2025.100137
  22. Enel Italia. Inaugurato nuovo parco solare a Casei Gerola (New solar farm inaugurated in Casei Gerola). [Online]. [Accessed 21.10.2025]. Available: https://corporate.enel.it/media/esplora-notizie/notizie/2023/06/parco-solarecasei-gerola (In Italian).
  23. European Commission. JRC Photovoltaic Geographical Information System (PVGIS). [Online]. [Accessed 21.10.2025]. Available: https://re.jrc.ec.europa.eu/pvg_tools/en/
  24. Ozdamar G., Mertcan M., Ozdamar A. Numerical comparison of the effect of blade material on wind turbine efficiency. Acta Phys Pol A 2018:134(1):156–158. https://doi.org/10.12693/APhysPolA.134.156
  25. Jelgava Climate. Weather By Month, Average Temperature (Latvia) - Weather Spark. [Online]. [Accessed 21.10.2025]. Available: https://weatherspark.com/y/90381/Average-Weather-in-Jelgava-Latvia-Year-Round
  26. Stevens R. J. A. M., Gayme D. F., Meneveau C. Effects of turbine spacing on the power output of extended wind-farms. Wind Energy 2016:19(2):359–370. https://doi.org/10.1002/we.1835
  27. European Commission. EU Emissions Trading System (EU ETS) – Climate Action. [Online]. [Accessed 22.10.2025]. Available: https://climate.ec.europa.eu/eu-action/carbon-markets/eu-emissions-trading-system-eu-ets_en
  28. Dhandapani S. et al. Assessment of differences in peat physico-chemical properties, surface subsidence and GHG emissions between the major land-uses of Selangor peatlands. Catena 2023:230:107255. https://doi.org/10.1016/j.catena.2023.107255
DOI: https://doi.org/10.2478/rtuect-2026-0003 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 25 - 44
Submitted on: Nov 28, 2025
|
Accepted on: Dec 12, 2025
|
Published on: Jan 22, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Francesco Romagnoli, Matteo Paolo Vigo, Riccardo Paoli, Elena Collina, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.