References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Lee H., Romero J. (Eds.); IPCC: Geneva, Switzerland, 2023:35–115. https://doi.org/10.59327/IPCC/AR6-9789291691647
- Gitarskiy M. L. The Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Utochneniye rukovodyashchikh printsipov natsional’nykh inventarizatsiy parnikovykh gazov MGEIK). Fundam. Appl. Climatol. 2019:2. https://doi.org/10.21513/0207-2564-2019-2-05-13 (In Russian)
- Rydin H., Jeglum J. K. The biology of peatlands, 2nd ed.; Biology of Habitats Series; Oxford University Press: Oxford, UK, 2013. https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001
- Lees K. J., Quaife T., Artz R. R. E., Khomik M., Clark J. M. Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands – A Review. Science of the Total Environment 2018:615:857–874. https://doi.org/10.1016/j.scitotenv.2017.09.103
- Hooijer A., Page S., Canadell J. G., Silvius M., Kwadijk J., Wösten H., Jauhiainen J. Current and Future CO₂ Emissions from Drained Peatlands in Southeast Asia. Biogeosciences 2010:7:1505–1514. https://doi.org/10.5194/bg-7-1505-2010
- Vanags-Duka M., Bārdule A., Butlers A., Upenieks E. M., Lazdiņš A., Purviņa D., Līcīte I. GHG Emissions from Drainage Ditches in Peat Extraction Sites and Peatland Forests in Hemiboreal Latvia. Land 2022:11(12):2233. https://doi.org/10.3390/land11122233
- Kou D., et al. Peatland Heterogeneity Impacts on Regional Carbon Flux and Its Radiative Effect within a Boreal Landscape. Journal of Geophysical Research: Biogeosciences 2022:127(9). https://doi.org/10.1029/2021JG006774
- ESA. Sentinel-2 User Handbook. European Space Agency: Paris, France, 2015.
- Bartkowiak P., Castelli M., Notarnicola C. Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas. Remote Sensing 2019:11(11):1319. https://doi.org/10.3390/rs11111319
- Wang Q., Li J., Jin T., Chang X., Zhu Y., Li Y., Sun J., Li D. Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands. Remote Sensing 2020:12(17):2708. https://doi.org/10.3390/rs12172708
- Priede A., Gancone A. Kūdras ieguves ietekmētu teritoriju atbildīga apsaimniekošana un ilgtspējīga izmantošana (Sustainable and Responsible After-Use of Peat Extraction Areas). Rīga, Latvia, 2019. In Latvian.
- Junttila S., Kelly J., Kljun N., Aurela M., Klemedtsson L., Lohila A., Nilsson M. B., Rinne J., Tuittila E. S., Vestin P., et al. Upscaling Northern Peatland CO₂ Fluxes Using Satellite Remote Sensing Data. Remote Sensing 2021:13(4):818. https://doi.org/10.3390/rs13040818
- Sato A., Vitullo M., Gschwantner T. Chapter 8 Settlements. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2019.
- LIFE Peat Restore. [Online]. [Accessed 28.05.2024]. Available: https://life-peat-restore.eu/en/
- Khan M. A., Rahman M., Ali S., Chowdhury N. Integration of Remote Sensing and GIS for Environmental Assessment. Environ. Res. J. 2025:12:45–60.
- Xiao J., Chevallier F., Gomez C., Guanter L., Hicke J. A., Huete A. R. Remote Sensing of the Terrestrial Carbon Cycle: A Review of Advances over 50 Years. Remote Sensing of Environment 2019:233:111383. https://doi.org/10.1016/j.rse.2019.111383
- Neigh C. HLS Operational Land Imager Vegetation Indices Daily Global 30 m v2.0; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2025. https://doi.org/10.5067/HLS/HLSL30_VI.002
- Neigh C. HLS Sentinel-2 Multi-Spectral Instrument Vegetation Indices Daily Global 30 m v2.0; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2025. https://doi.org/10.5067/HLS/HLSS30_VI.002
- Dubovyk O., Landmann T., Erasmus B. F. N., Tewes A., Schellberg J. Monitoring Vegetation Dynamics with Medium Resolution MODIS-EVI Time Series at Sub-Regional Scale in Southern Africa. Int. J. Appl. Earth Obs. Geoinf. 2015:38:175–183. https://doi.org/10.1016/j.jag.2015.01.002
- Ganguly S., Friedl M. A., Tan B., Zhang X., Verma M. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product. Remote Sensing of Environment 2010:114(8):1805–1816. https://doi.org/10.1016/j.rse.2010.04.005
- Habib W., Ingle R., Saunders M., Connolly J. Quantifying Peatland Land Use and CO₂ Emissions in Irish Raised Bogs: Mapping Insights Using Sentinel-2 Data and Google Earth Engine. Scientific Reports 2024:14:1171. https://doi.org/10.1038/s41598-024-51660-0
- Gray J., Song C. Mapping Leaf Area Index Using Spatial, Spectral, and Temporal Information from Multiple Sensors. Remote Sensing of Environment 2012:119:173–183. https://doi.org/10.1016/j.rse.2011.12.016
- Fuster B., Sánchez-Zapero J., Camacho F., García-Santos V., Verger A., Lacaze R., Weiss M., Baret F., Smets B. Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global Land Service. Remote Sensing 2020:12(6):1017. https://doi.org/10.3390/rs12061017
- Viña A., Gitelson A. A., Nguy-Robertson A. L., Peng Y. Comparison of Different Vegetation Indices for the Remote Assessment of Green Leaf Area Index of Crops. Remote Sensing of Environment 2011:115:3468–3478. https://doi.org/10.1016/j.rse.2011.08.010
- Berra E. F., Gaulton R. Remote Sensing of Temperate and Boreal Forest Phenology: A Review of Progress, Challenges and Opportunities in the Intercomparison of In-Situ and Satellite Phenological Metrics. Forest Ecology and Management 2021:480:118705. https://doi.org/10.1016/j.foreco.2020.118705
- Levy P., Clement R., Cowan N., Keane B., Myrgiotis V., van Oijen M., Smallman T. L., Toet S., Williams M. Challenges in Scaling Up Greenhouse Gas Fluxes: Experience from the UK Greenhouse Gas Emissions and Feedbacks Program. J. Geophys. Res. Biogeosci. 2022:127. https://doi.org/10.1029/2021JG006743
- Chen J., Gao M., Huang S., Hou W. Application of Remote Sensing Satellite Data for Carbon Emissions Reduction. J. Chin. Econ. Bus. Stud. 2021:19(2):109–117. https://doi.org/10.1080/14765284.2021.1920329
- Boniface K., Gioia C., Pozzoli L., Diehl T., Dobricic S., Fortuny Guasch J., Greidanus H., Kliment T., Kucera J., Janssens-Maenhout G., et al. Europe’s Earth Observation, Satellite Navigation and Satellite Communications Missions and Services for the Benefit of the Arctic: Inventory of Current and Future Capabilities, Their Synergies and Societal Benefits. Publications Office of the European Union: Luxembourg, 2021.
- Boesch H., Liu Y., Tamminen J., Yang D., Palmer P. I., Lindqvist H., Cai Z., Che K., Di Noia A., Feng L. et al. Monitoring Greenhouse Gases from Space. Remote Sensing 2021:13(14):2700. https://doi.org/10.3390/rs13142700
- Montgomery J., Brisco B., Chasmer L., Devito K., Cobbaert D., Hopkinson C. SAR and LiDAR Temporal Data Fusion Approaches to Boreal Wetland Ecosystem Monitoring. Remote Sensing 2019:11(2):161. https://doi.org/10.3390/rs11020161
- Millar D. J., Cooper D. J., Dwire K. A., Hubbard R. M., Ronayne M. J., von Fischer J. Hydrological Dynamics and Associated Greenhouse Gas Fluxes in a Mountain Peatland under Different Climate Scenarios. Ecohydrology 2023:16(5):e2536. https://doi.org/10.1002/eco.2536
- Halme P., Allen K. A., Auniņš A., Bradshaw R. H. W., Brumelis G., Čada V. et al. Challenges of Ecological Restoration: Lessons from Forests in Northern Europe. Biological Conservation 2013:167:452–453. https://doi.org/10.1016/j.biocon.2013.07.020
- van Beijma S., Chatterton J., Page S., Rawlings C., Tiffin R., King H. The Challenges of Using Satellite Data Sets to Assess Historical Land Use Change and Associated Greenhouse Gas Emissions: A Case Study of Three Indonesian Provinces. Carbon Management 2018:9(4):399–413. https://doi.org/10.1080/17583004.2018.1511383