References
- European Commission. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. Brussels, 2018.
- The European Green Deal. Striving to be the first climate-neutral continent. [Online]. [Accessed 13.03.2025]. Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.
- Latvian Peat Association. Peat extraction and GHG emissions, 2022. [Online]. [Accessed 18.03.2025]. Available: https://www.latvijaskudra.lv/en/Interesting_information/ghg_emissions/
- Pajtík J., Konôpka B., Lukac M. Biomass Functions and Expansion Factors in Young Norway Spruce (Picea abies [L.] Karst) Trees. Forest Ecology and Management 2008:256(5):1096–1103. https://doi.org/10.1016/J.FORECO.2008.06.013
- Forestry in 2021. Official statistics of Latvia. [Online]. [Accessed 13.05.2025]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/forestry/publications-and-infographics/10963-forestry-2021.
- Mezulis M., Arbidans L., Millere L. L., Lauberts M., Grinfelds U., Klavins M. Green Chemistry Approaches for Processing of Coniferous Needles and Greenery to Implement Circular Bioeconomy Concepts in Forestry. Environmental and Climate Technologies 2025:29(1):97–133. https://doi.org/10.2478/rtuect-2025-0007
- Shi Y., Matsunaga T., Saito M., Yamaguchi Y., Chen X. Comparison of global inventories of CO₂ emissions from biomass burning during 2002–2011 derived from multiple satellite products. Environmental Pollution 2015:206:479–487. https://doi.org/10.1016/j.envpol.2015.08.009
- Sui W., Li S., Zhou X., Dou Z., Liu R., Wu T., Jia H., Wang G., Zhang M. Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions. Molecules 2021:26(13):3841. https://doi.org/10.3390/molecules26133841
- Hu Z.-T., Huo W., Chen Y., Zhang Q., Hu M., Zheng W., Shao Y., Pan Z., Li X., Zhao J. Humic Substances Derived From Biomass Waste During Aerobic Composting and Hydrothermal Treatment: A Review. Frontiers in Bioengineering and Biotechnology 2022:10. https://doi.org/10.3389/fbioe.2022.878686
- Zhu Y., Cao Y., Fu B., Wang C., Shu S., Zhu P., Wang D., Xu H., Zhong N., Cai D. Waste Milk Humification Product Can Be Used as a Slow Release Nano-Fertilizer. Nature Communications 2024:15:128. https://doi.org/10.1038/s41467-023-44422-5
- Li X., Zhi Y., Jia M., Wang X., Tao M., Wang Z., Xing B. Properties and Photosynthetic Promotion Mechanisms of Artificial Humic Acid Are Feedstock-Dependent. Carbon Research 2024:3:4. https://doi.org/10.1007/s44246-023-00085-x
- Zhao B.C., Wang Y., Ma L., Deng Y., Xu Z. Adjusting pH of the Secondary Composting Materials to Further Enhance the Lignocellulose Degradation and Promote the Humification Process. Social Science Research Network 2023:15(1):9032. https://doi.org/10.3390/su15119032
- Čabalová I., Bélik M., Kučerová V., Jurczyková T. Chemical and Morphological Composition of Norway Spruce Wood (Picea abies, L.) in the Dependence of Its Storage. Polymers 2021:13(10):1619. https://doi.org/10.3390/polym13101619
- Kļaviņš M., Ansone-Bērtiņa L., Arbidans L., Kļaviņš L. Biomass waste processing into artificial humic substances. Environmental and Climate Technologies 2021:25(1):631–639. https://doi.org/10.2478/rtuect-2021-0047
- Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance 2006:178:42–55. https://doi.org/10.1016/j.jmr.2005.08.013
- Senese G. S., Martin-Neto L., Villas-Boas P. R., Nicolodelli G., Milori D. M. Laser-based spectroscopic methods to evaluate the humification degree of soil organic matter in whole soils: A review. Journal of Soils and Sediments 2018:18(4):1292–1302. https://doi.org/10.1007/s11368-016-1539-6
- Rosset J. S., Tavares O. C. H., Pereira M. G., do Carmo Lana M., Schiavo J. A., Barros Ozório J. M., Lima S. M. Chemical and Spectroscopic Characteristics of Humic Acids Under No-Tillage and Forest Systems. Communications in Soil Science and Plant Analysis 2023:55(6):796–813. https://doi.org/10.1080/00103624.2023.2277415
- Shao Y., Bao M., Huo W., Ye R., Liu Y., Lu W. Production of artificial humic acid from biomass residues by a noncatalytic hydrothermal process. Journal of Cleaner Production 2022:335:130302. https://doi.org/10.1016/j.jclepro.2021.130302
- He Z.-Q., Cao X.-Y., Mao J.-D., Ohno T., Waldrip H. M. Analysis of Carbon Functional Groups in Mobile Humic Acid and Recalcitrant Calcium Humate Extracted from Eight US Soils. Pedosphere 2013:23(6):705–716. https://doi.org/10.1016/S1002-0160(13)60063-6
- Watanabe A., McPhail D. B., Maie N., Kawasaki S., Anderson H. A., Cheshire M. V. Electron spin resonance characteristics of humic acids from a wide range of soil types. Organic Geochemistry 2005:36(7):981–990. https://doi.org/10.1016/j.orggeochem.2005.03.002
- Polewski K., Sławińska D., Sławiński J., Pawlak A. The effect of UV and visible light radiation on natural humic acid EPR spectral and kinetic studies. Geoderma 2005:126(3–4):291–299. https://doi.org/10.1016/j.geoderma.2004.10.001
- Barriquello M. F., Da S., Saab C., Filho N. C., Martin-Neto L. Electron Paramagnetic Resonance Characterization of a Humic Acid-Type Polymer Model. Journal of the Brazilian Chemical Society 2010:21(12). https://doi.org/10.1590/S0103-50532010001200018
- Sutradhar S., Fatehi P. Latest Development in the Fabrication and Use of Lignin-Derived Humic Acid. Biotechnology for Biofuels and Bioproducts 2023:16:38. https://doi.org/10.1186/s13068-023-02278-3
- Han S-Z., Zhang B-T., Wang M-Q., Guo R-B., Fu S-F. Optimization of alkaline hydrothermal treatment for humic acids production from corn straw digestate using the response surface methodology. Journal of Environmental Chemical Engineering 2024:12(2):112465. https://doi.org/10.1016/j.jece.2024.112465
- Ischia G., Marzban N., Schmidt J. Volikov A. Transitioning from hydrothermal carbonization to humification for producing artificial humic substances. Bioresource Technology 2026:439:133306. https://doi.org/10.1016/j.biortech.2025.133306