References
- The Presidency. Presidency on international partnership to support a just transition to a low carbon economy and a climate resilient society. South African Government. [Online]. [Accessed 18.07.2024]. Available: https://www.gov.za/news/media-statements/presidency-international-partnership-support-just-transition-low-carbon
- Pierce W., Le Roux M. Statistics of utility-scale power generation in South Africa 2022. 2023.
- Department of Environmental Affairs. National waste management strategy. 2020. [Online]. [Accessed 18.07.2024]. Available: https://www.dffe.gov.za/sites/default/files/docs/nationalwaste_management_strategy.pdf
- FAO. World Food and Agriculture Statistical Yearbook. 2021. FAO, 2021.
- Coppola D., Lauritano C., Esposito F. P., Riccio G., Rizzo C., de Pascale D. Fish Waste: From Problem to Valuable Resource. Marine drugs 2021:19(2):116. https://doi.org/10.3390/md19020116
- Ingabire H., Ntambara B., Mazimpaka E. Characterization and analysis of fish waste as feedstock for biogas production. International Journal of Low-Carbon Technologies 2023:18:212–217. https://doi.org/10.1093/ijlct/ctac135
- Cadavid-Rodríguez L. S., Vargas-Muñoz M. A., Plácido J. Biomethane from fish waste as a source of renewable energy for artisanal fishing communities. Sustainable Energy Technologies and Assessments 2019:34:110–115. https://doi.org/10.1016/j.seta.2019.05.006
- Xu J., Mustafa A. M., Sheng K. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste. Environmental Technology 2017:38(20). https://doi.org/10.1080/09593330.2016.1269837
- Mugodo K., Magama P. P., Dhavu K. Biogas Production Potential from Agricultural and Agro-Processing Waste in South Africa. Waste Biomass Valorization 2017:8(7):2383–2392. https://doi.org/10.1007/s12649-017-9923-z
- Shonhiwa C., Mapantsela Y., Makaka G., Mukumba P., Shambira N. Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review. Energies 2023:16(14):5272. https://doi.org/10.3390/en16145272
- Ngarava S., Zhou L., Slayi M., Ningi T., Nguma A., Ncetani N. Aquaculture Production in the Midst of GHG Emissions in South Africa. Water (Switzerland) 2023:15(7):1253. https://doi.org/10.3390/w15071253
- Haddaway N. R., Page M. J., Pritchard C. C., McGuinness L. A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews 2022:18(2). https://doi.org/10.1002/cl2.1230
- McGuinness L. A., Higgins J. P. T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Research Synthesis Methods, Special Issue: Data Visualization for Evidence Synthesis 2021:12(1):55–61.https://doi.org/10.1002/jrsm.1411
- Sterne J. A. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. The BMJ 2016:355:4–10. https://doi.org/10.1136/bmj.i4919
- Yulisa A., Hwang S., Chairattanawat C., Park S. H., Jannat M. A. H. Effect of Substrate-to-Inoculum Ratio and Temperatures During the Start-up of Anaerobic Digestion of Fish Waste. Industrial and Domestic Waste Management 2022:2(1):17–29. https://doi.org/10.53623/idwm.v2i1.80
- Da Silva D. M. S., Cavalcanti J. V. F. L., Júnior A. D. N. F., Peres S., Alves M. M., Benachour M. Biogas production and greenhouse gas mitigation using fish waste from Bragança/Brazil. Chemical Industry and Chemical Engineering Quarterly 2023:29(4):319–331. https://doi.org/10.2298/CICEQ220614004S
- Kafle G. K., Kim S. H. Evaluation of the biogas productivity potential of fish waste: a lab scale batch study. Journal of Biosystems Engineering 2012:37(5):302–313. https://doi.org/10.5307/JBE.2012.37.5.302
- Kuusik A., Pachel K., Kuusik A., Loigu E. Anaerobic co-digestion of sewage sludge with fish farming waste. In 9th International Conference on Environmental Engineering, ICEE 2014, Dept. of Mathematical Modelling, 2014. https://doi.org/10.3846/enviro.2014.084
- Nalinga Y., Legonda I. Experimental investigation on biogas production from anaerobic co-digestion of water hyacinth and fish waste, 2016.
- Rajendiran N., Ganesan S., Velmurugan N., Venkatachalam S. S. Synergistic effect of biogas production from codigestion of fish and vegetable market wastes and kinetic modelling. Biomass Convers Biorefin 2022:14:12329–12341. https://doi.org/10.1007/s13399-022-03244-z
- Ivanovs K., Spalvins K., Blumberga D. Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia 2018:147:390–396. https://doi.org/10.1016/j.egypro.2018.07.108
- Nges I. A., Mbatia B., Björnsson L. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction. Journal of Environmental Management 2012:110:159–165. https://doi.org/10.1016/j.jenvman.2012.06.011
- Hadiyarto A., Djohari S., Budiyono B., Hutama I., Hasyim W. The effect of f/m ratio to the anaerobic decomposition of biogas production from fish offal waste. Waste Technology 2015:3(2). https://doi.org/10.12777/wastech.3.2.58-61
- Moretta F., Bozzano G. Mathematical and Statistical Approaches for Anaerobic Digestion Feedstock Optimization. Cham: Springer Nature Switzerland. 2024. https://doi.org/10.1007/978-3-031-56460-4
- Sakai T.-Y. S. Official Journal of the Japan Society of Material Cycles and Waste Management (KSWMJSMCWM) and the Korea Society of Waste Management. Journal of Material Cycles and Waste Management 2023:25(2).
- Estevez M. M., Sapci Z., Linjordet R., Morken J. Incorporation of fish by-product into the semi-continuous anaerobic co-digestion of pre-treated lignocellulose and cow manure, with recovery of digestate’s nutrients. Renewable Energy 2014:66:550–558. https://doi.org/10.1016/j.renene.2014.01.001
- Ingabire H., M’arimi M. M., Kiriamiti K. H., Ntambara B. Optimization of biogas production from anaerobic codigestion of fish waste and water hyacinth. Biotechnology for Biofuels and Bioproducts 2023:16(1). https://doi.org/10.1186/s13068-023-02360-w
- Solli L., Bergersen O., Sørheim R., Briseid T. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production. Waste Management 2014:34(8):1553–1559. https://doi.org/10.1016/j.wasman.2014.04.011
- Solli L., Schnürer A., Horn S. J. Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure. Renewable Energy 2018:125:529–536. https://doi.org/10.1016/j.renene.2018.02.123
- Msibi S. S., Kornelius G. Potential for domestic biogas as household energy supply in South Africa. Journal of Energy in Southern Africa 2017:28(2). https://doi.org/10.17159/2413-3051/2017/v28i2a1754
- Rasimphi T. E., Tinarwo D. Relevance of biogas technology to Vhembe district of the Limpopo province in South Africa. Biotechnology Reports 2019:25:e00412. https://doi.org/10.1016/j.btre.2019.e00412
- Sarker S., Lamb J. J., Hjelme D. R., Lien K. M. A review of the role of critical parameters in the design and operation of biogas production plants. Applied Sciences 2019:9(9):1915. https://doi.org/10.3390/app9091915
- Dell’Orto A., Trois C. Considerations on bio-hydrogen production from organic waste in South African municipalities: A review. South African Journal of Science 2022:118:SI. https://doi.org/10.17159/sajs.2022/12652
- Fadhil A. B., Ahmed A. I., Salih H. A. Production of liquid fuels and activated carbons from fish waste. Fuel 2017:187:435–445. https://doi.org/10.1016/j.fuel.2016.09.064
- Yulisa A., Park S. H., Chairattanawat C., Hwang S. Effect of feeding strategies on the start-up of anaerobic digestion of fish waste. Energy 2023:280:128199. https://doi.org/10.1016/j.energy.2023.128199
- Ighodaro O. A Study of biogas generation from poultry litter and its impurity removal. 2019.
- Mohamed M. A., Elazab H. A., Gadalla M. A., Ashour F. A. Conversion of Fish Waste Oil into Biofuel: An Experimental Study. Letters in Applied NanoBiocience 2024:13(3). https://doi.org/10.33263/LIANBS133.108
- Samat A. F., Safiah Muhamad N. A., Abd Rasib N. A., Mohd Hassan S. A., Ahmad Sohaimi K. S., Iberahim N. I. The Potential of Biodiesel Production derived from Fish Waste. In IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2018. https://doi.org/10.1088/1757-899X/318/1/012017
- Bücker F. et al. Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy 2020:147:798–805. https://doi.org/10.1016/j.renene.2019.08.140
- Abu Hanifa Jannat M., Hyeok Park S., Chairattanawat C., Yulisa A., Hwang S. Effect of different microbial seeds on batch anaerobic digestion of fish waste. Bioresource Technology 2022:349. https://doi.org/10.1016/j.biortech.2022.126834
- Lehtinen S., Skolan K., Arkitektur F., Samhällsbyggnad O. Building a Small Scale Anaerobic Digester in Quelimane.
- Choe U., Mustafa A. M., Lin H., Xu J., Sheng K. Effect of bamboo hydrochar on anaerobic digestion of fish processing waste for biogas production. Bioresource Technology 2019:283:340–349. https://doi.org/10.1016/j.biortech.2019.03.084
- Lappi J. The sustainability transition potential of biogenic by-product valorisation in Namibia. Programme in Environmental Technology Master’s Programme in Circular Economy.
- Mutungwazi A., Mukumba P., Makaka G. Biogas digester types installed in South Africa: A review. Renewable and Sustainable Energy Reviews 2018:81:172–180. https://doi.org/10.1016/j.rser.2017.07.051
- Kumar H. S. Anaerobic co-digestion of fish waste and other organic materials. Preprint. 2024. https://doi.org/10.21203/rs.3.rs-4853696/v1
- Ogur E. Optimization of Biogas Production from Potato Peels and Fish Waste using MATLAB. Preprint. 2024. https://doi.org/10.21203/rs.3.rs-4556674/v1
- JBI Levels of Evidence Supporting Documents-v2. Joanna Briggs Institute Levels of Evidence and Grades of Recommendation Working Party. 2025, vol. 29, no. 1, pp. 1058–1072