Have a personal or library account? Click to login
Design and Optimization of a Fully Renewable-Based Energy Mix Cover

Design and Optimization of a Fully Renewable-Based Energy Mix

Open Access
|Dec 2025

References

  1. Said Z., Alshehhi A. A., Mehmood A. Predictions of UAE’s renewable energy mix in 2030. Renewable Energy 2018:118:779–89. https://doi.org/10.1016/j.renene.2017.11.075
  2. Suharevska K., Blumberga D. Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environmental and Climate Technologies 2019:23(2):47–63. https://doi.org/10.2478/rtuect-2019-0054
  3. Zurita A., Mata-Torres C., Valenzuela C., Felbol C., Cardemil J. M., Guzmán A. M., Escobar R. A. Techno-economic evaluation of a hybrid CSP + PV plant integrated with thermal energy storage and a large-scale battery energy storage system for base generation. Solar Energy 2018:173:1262–1277. https://doi.org/10.1016/j.solener.2018.08.061
  4. Frank C., Fiedler S., Crewell S. Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries. Renewable Energy 2021:163:674–684. https://doi.org/10.1016/j.renene.2020.07.103
  5. Cole W., Frazier A. W. Impacts of increasing penetration of renewable energy on the operation of the power sector. The Electricity Journal 2018:31(10):24–31. https://doi.org/10.1016/j.tej.2018.11.009
  6. Sisternes F. J., Jenkins J. D., Botterud A. The value of energy storage in decarbonizing the electricity sector. Applied Energy 2016:175:368–379. https://doi.org/10.1016/j.apenergy.2016.05.014
  7. Leonard M. D., Michaelides E. E., Michaelides D. N. Energy storage needs for the substitution of fossil fuel power plants with renewables. Renewable Energy 2020:145:951–962. https://doi.org/10.1016/j.renene.2019.06.066
  8. Verbruggen S. Energy storage picks up pace as costs fall [Online]. [Accessed 18.09.2024]. Available: https://www.windpowermonthly.com/article/1523664/energy-storage-picks-pace-costs-fall?utm_source=website&utm_medium=social
  9. IRENA. Electricity storage and renewables: Costs and markets to 2030. 2017.
  10. Treimane A., Blumberga D. Potential of Wind-Hydrogen (Power-to-X) Energy Systems in Latvia. Environmental and Climate Technologies 2025:29(1):272–284. https://doi.org/10.2478/rtuect-2025-0019
  11. Zghaibeh M., Ben Belgacem I., Barhoumi E. M., Baloch M. H., Chauhdary S. T., Kumar L., Arici M. Optimization of green hydrogen production in hydroelectric-photovoltaic grid connected power station. International Journal of Hydrogen Energy 2023:52(A):440–453. https://doi.org/10.1016/j.ijhydene.2023.06.020
  12. Bower G., Jones W., O’Rear E. G., Larsen J. Clean Hydrogen: A Versatile Tool for Decarbonization.
  13. Hassan Q., Sameen A. Z., Salman H. M., Jaszczur M. Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy 2023:48(88):34299–34315. https://doi.org/10.1016/j.ijhydene.2023.05.126
  14. IRENA REAI. Green hydrogen supply: A guide to policy making. 2021.
  15. DNV. Hydrogen as an energy carrier. 2018.
  16. Lauka D., Vicmane L. K., Bohvalovs G., Dzenajavičienė E. F., Vītoliņš V., Rošā M., Cenian A., Blumberga D. Modeling Energy Transition in Baltic Municipalities. Environmental and Climate Technologies 2025:29(1):641–657. https://doi.org/10.2478/rtuect-2025-0044
  17. Polikarpova I., Lauka D., Blumberga D., Vigants E. Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies 2019:23(3):101–109. https://doi.org/10.2478/rtuect-2019-0082
  18. Jung J., Villaran M. Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews 2017:75:180–191. https://doi.org/10.1016/j.rser.2016.10.061
  19. Vera Y. E. G., Dufo-López R., Bernal-Agustín J. L. Energy management in microgrids with renewable energy sources: A literature review. Applied Sciences 2019:9(18):3854. https://doi.org/10.3390/app9183854
  20. Seck G. S., Krakowski V., Assoumou E., Maïzi N., Mazauric V. Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050. Applied Energy 2020:257:114037. https://doi.org/10.1016/j.apenergy.2019.114037
  21. Balaji V., Gurgenci H. Search for optimum renewable mix for Australian off-grid power generation. Energy 2019:175:1234–1245. https://doi.org/10.1016/j.energy.2019.03.089
  22. Fatin Ishraque Md., Shezan Sk. A., Ali M. M., Rashid M. M. Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources. Applied Energy 2021:292:116879. https://doi.org/10.1016/j.apenergy.2021.116879
  23. Dwijendra N. K. A., Candra O., Mubarak I. A., Braiber H. T., Ali M. H., Muda I., Sivaraman R., Iswanto A. H. Optimal Energy-Saving in Smart Energy Hub Considering Demand Management. Environmental and Climate Technologies 2022:26(1):1244–1256. https://doi.org/10.2478/rtuect-2022-0094
  24. Ramesh M., Saini R. P. Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India. Journal of Cleaner Production 2020:259:120697. https://doi.org/10.1016/j.jclepro.2020.120697
  25. Vaziri Rad M. A., Kasaeian A., mahian O. Evaluation of stand-alone hybrid renewable energy system with excess electricity minimizer predictive dispatch strategy. Energy Conversion and Management 2024:299:117898. https://doi.org/10.1016/j.enconman.2023.117898
  26. Brumana G., Franchini G., Ghirardi E. Investigation of the Load-Following Capability of CSP Plants. Energy Procedia 2018:148:615–622. https://doi.org/10.1016/j.egypro.2018.08.149
  27. Ghirardi E., Brumana G., Franchini G., Perdichizzi A. The optimal share of PV and CSP for highly renewable power systems in the GCC region. Renewable Energy 2021:179:1990–2003. https://doi.org/10.1016/j.renene.2021.08.005
  28. Agajie T. F., Ali A., Fopah-Lele A., Amoussou I., Khan B., Velasco C. L. R., Tanyi E. A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems. Energies 2023:16(2):642. https://doi.org/10.3390/en16020642
  29. Ghirardi E., Brumana G., Franchini G., Aristolao N., Vedovati G. The role of hydrogen storage and electric vehicles in grid-isolated hybrid energy system with high penetration of renewable. Energy Conversion and Management 2024:302:118154. https://doi.org/10.1016/j.enconman.2024.118154
  30. Waris. WRS ST72F 300 – 350 W. n.d.
  31. Vestas. Are you looking for the maximum return on your investment in wind energy? 2017. [Online]. [Accessed 14.03.2025]. Available: https://pdf.archiexpo.com/viewerCatalog/vestas/2mw-platform-brochure/88087-432346-_2.html#open
  32. Soares C. Microturbines: Applications for Distributed Energy Systems. Butterworth-Heinemann, 2007. Ebook.
  33. Mancera J. J. C., Manzano F. S., Andújar J. M., Vivas F. J., Calderón A. J. An optimized balance of plant for a medium-size PEM electrolyzer. Design, control and physical implementation. Electronics 2020:9(5):871. https://doi.org/10.3390/electronics9050871
  34. Molecules, mass, and finding the right energy balance: A deeper look into the methanation process. 2024. [Online]. [Accessed 14.03.2025]. Available: https://tes-h2.com/blog/molecules-mass-and-finding-the-right-energy-balance-a-deeper-look-into-the-methanation-process
  35. Natural Gas Fuel Basics. [Online]. [Accessed 14.03.2025]. https://afdc.energy.gov/fuels/natural-gas-basics
  36. Brumana G., Franchini G., Ghirardi E. Investigation of the Load-Following Capability of CSP Plants. Energy Procedia 2018:148:615–622. https://doi.org/10.1016/j.egypro.2018.08.149
  37. Turchi C. S., Boyd M., Kesseli D., Kurup P., Mehos M., Neises T., Sharan P., Wagner M., Wendelin T. CSP Systems Analysis – Final Project Report. National Renewable Energy Laboratory 2019. https://doi.org/10.2172/1513197
  38. IRENA. Innovation landscape for a renewable-powered future: Solutions to integrate variable renewables. 2019. [Online]. [Accessed 14.03.2025]. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Innovation_Landscape_2019_report.pdf
  39. Pauschert D. Study of Equipment Prices in the Power Sector. 2009. https://doi.org/10.1596/17531
  40. Lesme C., José A., Robert B., Álvaro R., José C., Jesús V. Industrial Energetic Districts: Impact Analysis on the Global Energy Efficiency and Business Competitiveness. E3S Web of Conferences 2018:64:08007. https://doi.org/10.1051/e3sconf/20186408007
  41. Marchenko O. V., Solomin S. V. The future energy: Hydrogen versus electricity. International Journal of Hydrogen Energy 2015:40(10):3801–3805. https://doi.org/10.1016/j.ijhydene.2015.01.132
  42. Zhang Y., Campana P. E., Lundblad A., Yan J. Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation. Applied Energy 2017:201:397–411. https://doi.org/10.1016/j.apenergy.2017.03.123
  43. Crespi E., Colbertaldo P., Guandalini G., Campanari S. Design of hybrid power-to-power systems for continuous clean PV-based energy supply. International Journal of Hydrogen Energy 2021:46(26):13691–13708. https://doi.org/10.1016/j.ijhydene.2020.09.152
  44. Baier J., Schneider G., Heel A. A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerland. Frontiers in Energy Research 2018:6:5. https://doi.org/10.3389/fenrg.2018.00005
  45. Gorre J., Ortloff F., Van Leeuwen C. Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage. Applied Energy 2019:253:113594. https://doi.org/10.1016/j.apenergy.2019.113594
  46. Brumana G., Franchini G., Ghirardi E., Perdichizzi A. Techno-economic optimization of hybrid power generation systems: A renewables community case study. Energy 2022:246:123427. https://doi.org/10.1016/j.energy.2022.123427
  47. Wetter M., Wright J. Comparison of a Generalized Pattern Search and a Genetic Algorithm Optimization Method. IBPSA. 2003:1401–1408.
  48. Brumana G., Ghirardi E., Franchini G. Comparison of Different Power Generation Mixes for High Penetration of Renewables. Sustainability 2024:16(19):8435. https://doi.org/10.3390/su16198435
  49. Brumana G., Ghirardi E., Franchini G., Ravellli S. Renewable-Based Energy Mix Optimization for Weak Interconnected Communities. Environment and Renewable Energy 2024:9:65–74. https://doi.org/10.1007/978-981-97-0056-1_6
DOI: https://doi.org/10.2478/rtuect-2025-0067 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1005 - 1018
Submitted on: Mar 17, 2025
|
Accepted on: Nov 2, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Giovanni Brumana, Gatis Bazbauers, Giuseppe Franchini, Elisa Ghirardi, Madara Rieksta, Edgars Vigants, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.