Have a personal or library account? Click to login
A Bibliometric and Literature-Based Overview of Biomass Pre-treatment and Conversion Technologies Modelling with Aspen Software Cover

A Bibliometric and Literature-Based Overview of Biomass Pre-treatment and Conversion Technologies Modelling with Aspen Software

Open Access
|Nov 2025

References

  1. Hannah L. Chapter 19 - Carbon Sinks and Sources. Climate Change Biology 2015:403–422. https://doi.org/10.1016/B978-0-12-420218-4.00019-6
  2. Costello R., Finnell J. Institutional opportunities and constraints to biomass development. Biomass and Bioenergy 1998:15(3):201–204. https://doi.org/10.1016/S0961-9534(98)00050-6
  3. Adam R., Pollex A., Zeng T., Kirsten C., Rover L., Berger F., Lenz V., Werner H. Systematic homogenization of heterogenous biomass batches – Industrial-scale production of solid biofuels in two case studies. Biomass and Bioenergy 2023:173:106808. https://doi.org/10.1016/j.biombioe.2023.106808
  4. Sosa A., Acuna M., McDonnell K., Devlin G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Applied Energy 2015:137:338–351. https://doi.org/10.1016/j.apenergy.2014.10.018
  5. Kumar J., Vyas S. Comprehensive review of biomass utilization and gasification for sustainable energy production. Environment, Development and Sustainability 2024:27(3):1–40. https://doi.org/10.1007/s10668-023-04127-7
  6. Singh Sikarwar V., Zhao M., Clough P., Yao J., Zhong X., Memon M. Z., Shah N., Anthony E. J., Fennel P. S. An overview of advances in biomass gasification. Energy & Environmental Science 2016:9(10):2939–2977. https://doi.org/10.1039/C6EE00935B
  7. Anekwe I. M. S., Khotseng L., Isa Y. M. 5.11 - The Place of Biofuel in Sustainable Living; Prospects and Challenges. Comprehensive Renewable Energy 2022:5:226–258. https://doi.org/10.1016/B978-0-12-819727-1.00068-6
  8. Heldman D. R., Moraru C. I. Eds, Encyclopedia of Agricultural, Food, and Biological Engineering, Second Edition. CRC Press, 2010. https://doi.org/10.1081/E-EAFE2
  9. Ciolkosz D., Wallace R. A review of torrefaction for bioenergy feedstock production. Biofuels, Bioproducts and Biorefining 2011:5(3):317–329. https://doi.org/10.1002/bbb.275
  10. Bajwa D. S., Peterson T., Sharma N., Shojaeiarani J., Bajwa S. G. A review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews 2018:96:296–305. https://doi.org/10.1016/j.rser.2018.07.040
  11. Guo X., Voogt J., Annevelink B., Snels J., Kanellopoulos A. Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers. Energies 2020:13(22):6153. https://doi.org/10.3390/en13226153
  12. Amos W. A. Report on Biomass Drying Technology. NREL/TP-570-25885, 9548, 1998. https://doi.org/10.2172/9548
  13. Alamia A., Ström H., Thunman H. Design of an integrated dryer and conveyor belt for woody biofuels. Biomass and Bioenergy 2015:77:92–109. https://doi.org/10.1016/j.biombioe.2015.03.022
  14. Rahman M. A., Hasnain S. M. M., Paramasivam P., Zairov R., Ayanie A. G. Solar Drying for Domestic and Industrial Applications: A Comprehensive Review of Innovations and Efficiency Enhancements. Global Challenges 2025:9(2):2400301. https://doi.org/10.1002/gch2.202400301
  15. Mutlu Ö. Ç., Büchner D., Theurich S., Zeng T. Combined Use of Solar and Biomass Energy for Sustainable and Cost-Effective Low-Temperature Drying of Food Processing Residues on Industrial-Scale. Energies 2021:14(3):561. https://doi.org/10.3390/en14030561
  16. Moiceanu G. et al. Energy Consumption at Size Reduction of Lignocellulose Biomass for Bioenergy. Sustainability 2019:11(9):2477. https://doi.org/10.3390/su11092477
  17. Kratky L., Jirout T. Experimental identification and modelling of specific energy requirement for knife milled beech chips in dependence on particle size characteristics and moist ure. Energy 2022:243:122749. https://doi.org/10.1016/j.energy.2021.122749
  18. World Bioenergy Association. Pellets – a fast growing energy carrier. 2014. [Online]. [Accessed 15.01.2025]. Available: https://www.worldbioenergy.org/uploads/Factsheet%20-%20Pellets.pdf
  19. Nunes C. S., Philipps-Wiemann P. Chapter 22 - Formulation of enzymes. Enzymes in Human and Animal Nutrition 2018:429–440. https://doi.org/10.1016/B978-0-12-805419-2.00022-8
  20. Keles S., Kar T., Bahadır A., Kaygusuz K. Renewable energy from woody biomass in Turkey. 2017:6.
  21. Wei Z., Cheng Z., Shen Y. Recent development in production of pellet fuels from biomass and polyethylene (PE) wastes. Fuel 2024:358:130222. https://doi.org/10.1016/j.fuel.2023.130222
  22. World Bioenergy Association. Global bioenergy statistics 2022. [Online]. [Accessed 23.01.2025]. Available: https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf
  23. Licite L., Cunskis J. Latvia University of Life Sciences and Technologies, Analysis of wood pellet production in Latvia. 20th International Scientific Conference ‘Economic Science for Rural Development 2019’, 2019:168–176. https://doi.org/10.22616/ESRD.2019.072
  24. Logan Clow. Wood Pellets Annual. [Online]. [Accessed 23.01.2025]. Available: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Wood%20Pellets%20Annual_London_United%20Kingdom_UK2024-0033
  25. Matheus T. T., Farrapo A. C., Lagunes R. M., Filleti R., Garcia D. P., Lopes Silva D. A. The effect of transportation choices for mitigating climate-related impacts: The case of solid biofuels exported to Europe produced by Latin American countries. Sustainable Production and Consumption 2024:45:551–566. https://doi.org/10.1016/j.spc.2024.01.022
  26. McMullen J., Fasina O. O., Wood C. W., Feng Y. Storage and handling characteristics of pellets from poultry litter. Applied Engineering in Agriculture 2005:21(4):645–651. https://doi.org/10.13031/2013.18553
  27. Moradi A., Moradi S., Abdollahi M. R. Influence of feed ingredients with pellet-binding properties on physical pellet quality, growth performance, carcass characteristics and nutrient retention in broiler chickens. Animal Production Science 2019:59(1):73. https://doi.org/10.1071/AN17109
  28. Wong M.-H., Mo W.-Y., Choi W.-M., Cheng Z., Man Y.-B. Recycle food wastes into high quality fish feeds for safe and quality fish production. Environmental Pollution 2016:219:631–638. https://doi.org/10.1016/j.envpol.2016.06.035
  29. Olson D. L. Optimization Models. In Encyclopedia of Information Systems, Elsevier. 2003:403–411. https://doi.org/10.1016/B0-12-227240-4/00128-3
  30. Zakariyya A., Mashina M. S., Lawal Z. Application of linear programming for profit aximization in Shukura Bakery, Zaria, Kaduna State, Nigeria. Dutse Journal of Pure and Applied Sciences 2022:8(1a):112–116. https://doi.org/10.4314/dujopas.v8i1a.12
  31. Chen W.-H., Peng J., Bi X. T. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 2015:44:847–866. https://doi.org/10.1016/j.rser.2014.12.039
  32. Nunes L. J. R., Matias J. C. O., Catalão J. P. S. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renewable and Sustainable Energy Reviews 2014:40:153–160. https://doi.org/10.1016/j.rser.2014.07.181
  33. Miller J. H. et al. Risk Minimization in Scale-Up of Biomass and Waste Carbon Upgrading Processes. ACS Sustainable Chemistry and Engineering 2024:12(2):666–679. https://doi.org/10.1021/acssuschemeng.3c06231
  34. Bridgwater A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012:38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
  35. Channiwala S. A., Parikh P. P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002:81(8):1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4
  36. Xia C., Cai L., Zhang H., Zuo L., Shi S. Q., Lam S. S. A review on the modeling and validation of biomass pyrolysis with a focus on product yield and composition. Biofuel Research Journal 2021:8(1):1296–1315. https://doi.org/10.18331/BRJ2021.8.1.2
  37. Simon F., Girard A., Krotki M., Ordoñez J. Modelling and simulation of the wood biomass supply from the sustainable management of natural forests. Journal of Cleaner Production 2021:282:124487. https://doi.org/10.1016/j.jclepro.2020.124487
  38. Žandeckis A., Kirsanovs V., Dzikēvičs M., Kļaviņa K. Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions. Energy Efficiency 2017:10(3):729–741. https://doi.org/10.1007/s12053-016-9482-3
  39. Khabdullina G., Paule D., Pakere I., Khabdullin A., Blumberga D. Boosting of Dissipated Renewable Energy Systems Towards Sustainability in Kazakhstan. Environmental and Climate Technologies 2024:28(1):540–555. https://doi.org/10.2478/rtuect-2024-0042
  40. Svedovs O., Dzikevics M., Kirsanovs V., Wardach-Święcicka I. Bibliometric Analysis of the Modelling of LowQuality Biomass Pellets Combustion. Environmental and Climate Technologies 2024:28(1):286–302. https://doi.org/10.2478/rtuect-2024-0023
  41. Blumberga D., Chen B., Ozarska A., Indzere Z., Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-0102
  42. Jani D. B. et al. A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle. Journal of Thermal Analysis and Calorimetry 2020:140(5):2011–2031. https://doi.org/10.1007/s10973-019-08968-1
  43. Krarouch M., Lamghari S., Hamdi H., Outzourhit A. Simulation and experimental investigation of a combined solar thermal and biomass heating system in Morocco. Energy Reports 2020:6:188–194. https://doi.org/10.1016/j.egyr.2020.11.270
  44. Vanaga R., Narbuts J., Zundāns Z., Gušča J. Systematic literature review of software tools for modeling heat transfer in phase change materials for building applications. IOP Conf. Ser.: Earth Environ. Sci. 2024:1372(1):012017. https://doi.org/10.1088/1755-1315/1372/1/012017
  45. Malaguti V., Lodi C., Sassatelli M., Pedrazzi S., Allesina G., Tartarini P. Dynamic behavior investigation of a micro biomass CHP system for residential use. IJHT 2017:35(1):S172–S178. https://doi.org/10.18280/ijht.35Sp0124
  46. Østergaard P. A., Andersen A. N., Sorknæs P. The business-economic energy system modelling tool energyPRO. Energy 2022:257:124792. https://doi.org/10.1016/j.energy.2022.124792
  47. Kumar S., Thakur J., Gardumi F. Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review. Renewable and Sustainable Energy Reviews 2022:168:112811. https://doi.org/10.1016/j.rser.2022.112811
  48. Østergaard P. A., Lund H., Mathiesen B. V. Editorial - Smart energy systems and 4th generation district heating systems. International Journal of Sustainable Energy Planning and Management 2018:16:1–2. https://doi.org/10.5278/ijsepm.2018.16.1
  49. Volkova A., Mashatin V., Hlebnikov A., Siirde A. Methodology for the Improvement of Large District Heating Networks. Environmental and Climate Technologies 2012:10(1):39–45. https://doi.org/10.2478/v10145-012-0009-7
  50. Østergaard P. A., Andersen A. N., Sorknæs P. The business-economic energy system modelling tool energyPRO. Energy 2022:257:124792. https://doi.org/10.1016/j.energy.2022.124792
  51. Silva J., Teixeira J., Teixeira S., Preziati S., Cassiano J. CFD Modeling of Combustion in Biomass Furnace. Energy Procedia 2017:120:665–672. https://doi.org/10.1016/j.egypro.2017.07.179
  52. Shi A., Pang Y., Xu G., Li C. Numerical Simulation of Biomass Gasification in a Fluidized Bed. International conference on Applied Science and Engineering Innovation, Zhengzhou, China, 2015. https://doi.org/10.2991/asei-15.2015.314
  53. Nekhamin M., Beztsennyi I., Dunayevska N., Vyfatnuik V. On using the ANSYS FLUENT software for calculating the process of burning a mixture of particles from different types of solid fuels. Eastern-European Journal of Enterprise Technologies 2020:4(8)(106):48–53. https://doi.org/10.15587/1729-4061.2020.209762
  54. Čajová Kantová N., Sładek S., Jandačka J., Čaja A., Nosek R. Simulation of Biomass Combustion with Modified Flue Gas Tract. Applied Sciences 2021:11(3):1278n. https://doi.org/10.3390/app11031278
  55. Somwangthanaroj S., Fukuda S. CFD modeling of biomass grate combustion using a steady-state discrete particle model (DPM) approach. Renewable Energy 2020:148:363–373. https://doi.org/10.1016/j.renene.2019.10.042
  56. Dahawi Y. A., Abdulrazik A., Seman M. N. A., Aziz M. A. A., Yunus M. Y. M. Aspen Plus Simulation of Bio-Char Production from a Biomass-Based Slow Pyrolysis Process. Key Engineering Materials 2019:797:336–341. https://doi.org/10.4028/www.scientific.net/KEM.797.336
  57. Shah I. A., Gou X., Wu J. Simulation Study of an Oxy-Biomass-Based Boiler for Nearly Zero Emission Using Aspen Plus. Energies 2019:12(10):1949. https://doi.org/10.3390/en12101949
  58. Koo M., Lin S.-C. An analysis of reporting practices in the top 100 cited health and medicine-related bibliometric studies from 2019 to 2021 based on a proposed guidelines. Heliyon 2023:9(6):e16780. https://doi.org/10.1016/j.heliyon.2023.e16780
  59. Svedovs O., Dzikevics M., Kirsanovs V. Bibliometric Analysis of the Alternative Biomass Types and Biomass Combustion Technologies. Environmental and Climate Technologies 2023:27(1):559–569. https://doi.org/10.2478/rtuect-2023-0041
  60. Mutlu Ö. Ç., Zeng T. Challenges and Opportunities of Modeling Biomass Gasification in Aspen Plus: A Review. Chemical Engineering & Technology 2020:43(9):1674–1689. https://doi.org/10.1002/ceat.202000068
  61. IEA Bioenergy. Thermal Pre-treatment of Biomass for Large-scale Applications. IEA Bioenergy ExCo66 Workshop, 2011. [Online]. [Accessed 23.01.2025]. Available: https://www.ieabioenergy.com/wp-content/uploads/2013/10/ExCo66-Thermal-pre-treatment-of-biomass-for-large-scale-applications-summary-and-conclusions1.pdf
  62. Tumuluru J. S. Biomass Engineering: Size reduction, drying and densification’, Biofuels and Renewable Energy Technology, Idaho National Laboratory, 2015. [Online]. [Accessed 23.01.2025]. Available: https://www.energy.gov/sites/prod/files/2015/04/f21/terrestrial_feedstocks_tumuluru_1212.pdf
  63. Xu D. et al. A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas. Applied Energy 2018:222:119–131. https://doi.org/10.1016/j.apenergy.2018.03.130
  64. Manouchehrinejad M., Mani S. Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels. Energy Conversion and Management: X 2019:1:100008. https://doi.org/10.1016/j.ecmx.2019.100008
  65. Onsree T., Jaroenkhasemmeesuk C., Tippayawong N. Techno-economic assessment of a biomass torrefaction plant for pelletized agro-residues with flue gas as a main heat source. Energy Reports 2020:6(S9):92–96. https://doi.org/10.1016/j.egyr.2020.10.043
  66. Awang A. H., Abdulrazik A., Dahawi Y., Nafsun A. I. Process flowsheet optimization of torrefied empty fruit bunch for retrofitting of biomass power plant. International Conference of Chemical Engineering and Industrial Biotechnology (ICCEIB2022), Pahang, Malaysia, 2023:030006. https://doi.org/10.1063/5.0173019
  67. Kazmi B. et al. Techno-economic assessment of sunflower husk pellets treated with waste glycerol for the Bio-Hydrogen production– A Simulation-based case study. Fuel 2023:348:128635. https://doi.org/10.1016/j.fuel.2023.128635
  68. Cao Y., Bai Y., Du J. Process simulation of staging pyrolysis and gasification of biomass in a dual fluidized bed system. Clean Technologies and Environmental Policy 2024:26(3):839–848. https://doi.org/10.1007/s10098-023-02654-5
  69. Moreda G. A., Teklemariyem D. A., Tolasa S. D., Gutata G. R. Pyrolysis of Khat waste vs. Coal: Experimental and Aspen plus analysis. Heliyon 2024:10(20):e39097. https://doi.org/10.1016/j.heliyon.2024.e39097
  70. Zhou Y. Experimental and Aspen Plus modeling research on bio-char and syngas co-production by gasification of biomass waste: the products and reaction energy balance evaluation . Biomass Conversion Biorefinery 2024:14(4):5387–5398. https://doi.org/10.1007/s13399-023-04085-0
  71. Tuntiwongwat T., Srinophakun T. R., Sukpancharoen S. Computational Thermodynamic Analysis of Hydrogen Production via Biomass Gasification. International Conference on Advanced Robotics and Mechatronics (ICARM), Tokyo, Japan: IEEE, July 2024:715–720. https://doi.org/10.1109/ICARM62033.2024.10715978
  72. Detchusananard T., Wuttipisan N., Limleamthong P., Prasertcharoensuk P., Maréchal F., Arpornwichanop A. Pyrolysis and gasification integrated process of empty fruit bunch for multi-biofuels production: Technical and economic analyses. Energy Conversion and Management 2022:258:115465. https://doi.org/10.1016/j.enconman.2022.115465
  73. Sarker T. R., German C. S., Borugadda V. B., Meda V., Dalai A. K. Techno-economic analysis of torrefied fuel pellet production from agricultural residue via integrated torrefaction and pelletization process. Heliyon 2023:9(6):e16359. https://doi.org/10.1016/j.heliyon.2023.e16359
  74. Ukanwa K. S., Patchigolla K., Sakrabani R. Energy and economic assessment of mixed palm residue utilisation for production of activated carbon and ash as fertiliser in agriculture. Environmental Technology 2023:44(7):948–960. https://doi.org/10.1080/09593330.2021.1989056
  75. Resmi A. K, R., Reghu R. Techno-economic and environmental analysis of bioenergy production from granulated coconut shell using aspen plus software. Alexandria Engineering Journal 2025:115:443–457. https://doi.org/10.1016/j.aej.2024.12.056
  76. Teixeira Penteado A. et al. Economic Potential of Bio-Ethylene Production via Oxidative Coupling of Methane in Biogas from Anaerobic Digestion of Industrial Effluents. Processes 2021:9(9):9. https://doi.org/10.3390/pr9091613
  77. Montenegro Camacho Y. S. et al. Development of a robust and efficient biogas processor for hydrogen production. Part 1: Modelling and simulation. International Journal of Hydrogen Energy 2017:42(36):22841–22855. https://doi.org/10.1016/j.ijhydene.2017.07.147
  78. Montenegro Camacho Y. S. et al. Development of a robust and efficient biogas processor for hydrogen production. Part 2: Experimental campaign. International Journal of Hydrogen Energy 2018:43(1):161–177. https://doi.org/10.1016/j.ijhydene.2017.10.177
  79. Yousef S., Tamošiūnas A., Aikas M., Uscila R., Gimžauskaitė D., Zakarauskas K. Plasma steam gasification of surgical mask waste for hydrogen-rich syngas production. International Journal of Hydrogen Energy 2024:49:1375–1386. https://doi.org/10.1016/j.ijhydene.2023.09.288
  80. Jouhara H., Żabnieńska-Góra A., Delpech B., Olabi V., El Samad T., Sayma A. High-temperature heat pumps: Fundamentals, modelling approaches and applications. Energy 2024:303:131882. https://doi.org/10.1016/j.energy.2024.131882
  81. Uibu M., Tamm K., Velts-Jänes O., Kallaste P., Kuusik R., Kallas J. Utilization of oil shale combustion wastes for PCC production: Quantifying the kinetics of Ca(OH)2 and CaSO4·2H2O dissolution in aqueous systems. Fuel Processing Technology 2015:140:156–164. https://doi.org/10.1016/j.fuproc.2015.09.010
  82. Tamm K., Kallas J., Kuusik R., Uibu M. Modelling Continuous Process for Precipitated Calcium Carbonate Production from Oil Shale Ash. Energy Procedia 2017:114:5409–5416. https://doi.org/10.1016/j.egypro.2017.03.1685
  83. Yörük C. R., Meriste T., Trikkel A., Kuusik R. Oxy-fuel Combustion of Estonian Oil Shale: Kinetics and Modeling. Energy Procedia 2016:86:124–133. https://doi.org/10.1016/j.egypro.2016.01.013
  84. Ochieng R., Cerón A. L., Konist A., Sarker S. Experimental and modeling studies of intermediate pyrolysis of wood in a laboratory-scale continuous feed retort reactor. Bioresource Technology Reports 2023:24:101650. https://doi.org/10.1016/j.biteb.2023.101650
  85. Stasiak K., Ertesvåg I. S., Ziółkowski P., Mikielewicz D. Exergy analysis and thermodynamic optimization of a bioenergy with carbon capture and storage gas power plant using Monte Carlo simulation of sewage sludge composition. Applied Thermal Engineering 2025:264:125312. https://doi.org/10.1016/j.applthermaleng.2024.125312
  86. Gao N., Chen C., Magdziarz A., Zhang L., Quan C. Modeling and simulation of pine sawdust gasification considering gas mixture reflux . Journal of Analytical and Applied Pyrolysis 2021:155:105094. https://doi.org/10.1016/j.jaap.2021.105094
  87. Carotenuto A. et al. Predictive modeling for energy recovery from sewage sludge gasification. Energy 2023:263:125838. https://doi.org/10.1016/j.energy.2022.125838
  88. Gil Chaves I. D., López J. R. G., García Zapata J. L., Leguizamón Robayo A., Rodríguez Niño G. Process Analysis and Simulation in Chemical Engineering. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-14812-0
  89. Al-Malah K. I. M. Aspen Plus: chemical engineering applications. Hoboken, New Jersey: John Wiley & Sons Inc, 2017. https://doi.org/10.1002/9781119293644
  90. Shi H. et al. Modelling of biomass gasification for fluidized bed in Aspen Plus: Using machine learning for fast pyrolysis prediction. Energy Conversion and Management 2025:332:119695. https://doi.org/10.1016/j.enconman.2025.119695
  91. Pinho R., Oliveira M., Mendes Teixeira B. M., Da Silva Borges A. D. Evaluating quality and price dynamics of wood pellets in the Portuguese market: Impacts of geopolitical and economic factors. Energy Strategy Reviews 2025:59:101719. https://doi.org/10.1016/j.esr.2025.101719
  92. Moradlou H., Reefke H., Skipworth H., Roscoe S. Geopolitical disruptions and the manufacturing location decision in multinational company supply chains: a Delphi study on Brexit. International Journal of Operations & Production Management 2021:41(2):102–130. https://doi.org/10.1108/IJOPM-07-2020-0465
  93. García R., Gil M. V., Rubiera F., Pevida C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019:251:739–753. https://doi.org/10.1016/j.fuel.2019.03.141
  94. Priedniece V., Sturmane A., Eglitis R., Juhnevica I., Krigers G., Kirsanovs V. Search for Alternative Raw Materials for Pellet Production – a Preliminary Study. Environmental and Climate Technologies 2024:28(1):652–669. https://doi.org/10.2478/rtuect-2024-0051
DOI: https://doi.org/10.2478/rtuect-2025-0059 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 880 - 898
Submitted on: Apr 3, 2025
|
Accepted on: Nov 5, 2025
|
Published on: Nov 28, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Oskars Svedovs, Edgars Vīgants, Haralds Siktars, Vladimirs Kirsanovs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.