Have a personal or library account? Click to login
Mechanisms and Characteristics of Thermodynamically Quasistable Structure Formation in Metals Cover

Mechanisms and Characteristics of Thermodynamically Quasistable Structure Formation in Metals

Open Access
|Nov 2025

References

  1. Sharma A., Zadorozhnyy V. Y., Wenrui J., Qiao J. C. Review of hermo-mechanical processing of metallic glasses. Journal of Non-Crystalline Solids 2025:666:123714. https://doi.org/10.1016/j.jnoncrysol.2025.123714.
  2. Feng Z., Geng H., Zhuang Y., Li P. Progress, Applications, and Challenges of Amorphous Alloys: A Critical Review. Inorganics 2024:12(9):232. https://doi.org/10.3390/inorganics12090232
  3. Sohrabi S., Fu J., Li L., Zhang Y., Li X., Sun F., Ma J., Wang W. H. Manufacturing of metallic glass components: Processes, structures and properties. Progress in Material Science 2024:144:101283. https://doi.org/10.1016/j.pmatsci.2024.101283
  4. Cranford S. Mighty Morphin(g) Amorphous Metals. Matter 2020:2(4):802–804. https://doi.org/10.1016/j.matt.2020.03.008
  5. Zhang G., Hu H., Wu J. Advances in Amorphous Nanomaterials: Synthesis, haracterization and Application. Materials Today Nano 2025:32:100675. https://doi.org/10.1016/j.mtnano.2025.100675
  6. Kang J., Yang X., Hu Q., Cai Z., Liu L.-M., Guo L. Recent Progress of Amorphous Nanomaterials. Chemical Reviews 2023:123(13):8859–8941. https://doi.org/10.1021/acs.chemrev.3c00229
  7. Han X., Wu G., Du J., Pi J., Yan M., Hong X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chemical Communications 2022:58(2):223–237. https://doi.org/10.1039/D1CC04141J
  8. Gao K., Zhu X. G., Chen L., Li W. H., Xu X., Pan B. T., Li W. R., Zhou W. H., Li L., Huang W., Li Y. Recent development in the application of bulk metallic glasses. Journal of Materials Science & Technology 2022:131:115–121. https://doi.org/10.1016/j.jmst.2022.05.028
  9. Mahbooba Z., Thorsson L., Unosson M., Skoglund P., West H., Horn T., Rock C., Vogli E., Harrysson O. Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness. Applied Materials Today 2018:11:264–269. https://doi.org/10.1016/j.apmt.2018.02.011
  10. Zhu S., Schroers J., Curtarolo S, Eckert H, van de Walle A. Special glass structures for first principles studies of bulk metallic glasses. Acta Materialia 2024:262:119456. https://doi.org/10.1016/j.actamat.2023.119456
  11. Wu G., Han X., Hong X. Order in disordered monolayer carbon. Matter 2023:6(8):2528–2530. https://doi.org/10.1016/j.matt.2023.05.037
  12. Halim Q., Mohamed N. A., Rejab M. R., Naim W. N., Ma Q. Metallic glass properties, processing method and development perspective: a review. The International Journal of Advanced Manufacturing Technology 2021:112(5):1231–1258. https://doi.org/10.1007/s00170-020-06515-z
  13. Jiang R., Da Y., Chen Z., Cui X., Han X., Ke H., Liu Y., Chen Y., Deng Y., Hu W. Progress and perspective of metallic glasses for energy conversion and storage. Advanced Energy Materials 2022:12(8):2101092. https://doi.org/10.1002/aenm.202101092
  14. Assouli S., Jabraoui H., Bajjou O., Kotri A., Mazroui M. H., Lachtioui Y. Exploring the impact of cooling rates and pressure on fragility and structural transformations in iron monatomic metallic glasses: Insights from molecular dynamics simulations. Journal of Non-Crystalline Solids 2023:621:122623. https://doi.org/10.1016/j.jnoncrysol.2023.122623
  15. El hafi T., Bajjou O., Jabraoui H., Louafi J., Mazroui M. Lachtioui Y. Effects of cooling rate on the glass formation process and the microstructural evolution of Silver mono-component metallic glass. Chemical physics 2023:569:111873. https://doi.org/10.1016/j.chemphys.2023.111873.
  16. El kharraz A., El hafi T., Assouli S., Samiri A., Kotri A., Bajjou O., Lachtioui Y. Mechanical and structural properties of monatomic zirconium metallic glass under pressure variations and annealing processes: A molecular dynamics study. Solid State Communications 2024:392:115644. https://doi.org/10.1016/j.ssc.2024.115644
  17. Assouli S., El Hafi T., El Kharraz A., Bajjou O., Lachtioui Y. Influence of cooling rate and pressure on the structural and mechanical properties of iron monatomic metallic glasses: Insights from molecular dynamics simulations. Solid State Communications 2025:399:115883. https://doi.org/10.1016/j.ssc.2025.115883
  18. Pavlenko A., Koshlak H. Heat and mass transfer during phase transitions in liquid mixtures. Rocznik Ochrona Srodowiska 2019:21(1):234–249
  19. Koshlak H., Pavlenko A. Method of formation of thermophysical properties of porous materials. Rocznik Ochrona Srodowiska 2019:21(2): 1253–1262.
  20. Pavlenko A., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912
  21. Feng Z., Geng H., Zhuang Y., Li P. Progress, Applications, and Challenges of Amorphous Alloys: A Critical Review. Inorganics 2024:12(9):232. https://doi.org/10.3390/inorganics12090232
  22. Trexler M. M., Thadhani N. N. Mechanical properties of bulk metallic glasses. Progress in Materials Science 2010:55(8):759–839. https://doi.org/10.1016/j.pmatsci.2010.04.002
  23. Quan D., Jun T., Caiju L., Baran S., Jürgen E. Room-temperature plasticity of metallic glass composites: A review, Composites Part B. Engineering 2024:280:111453. https://doi.org/10.1016/j.compositesb.2024.111453
  24. Muscas G., Johansson R., George S., Martina A., Dimitri A., Rajeev A., Scheicher R. H., Jönsson P. E. Unveiling the local structure of the amorphous metal combining first-principles-based simulations and modelling of EXAFS spectra. Scientific Reports 2023:13:4983. https://doi.org/10.1038/s41598-023-32051-3
  25. Shen Y., Samwer K., Johnson W. L., Goddard W. A., An Q. Phase formation and phase stability for the homogenous and heterogeneous amorphous metals versus the crystalline phase. Proc. Natl. Acad. Sci. U.S.A. 2025:122(4):e2404489122. https://doi.org/10.1073/pnas.2404489122
  26. Cui C. Y., Liu X. F., Feng L., Xu H. H., Yang J., Cui X. G., Yan H. F. Effects of B content on the microstructure and corrosion resistance of laser cladding CoCrNiNb0.6Bx high-entropy alloy coatings. Journal of Alloys and Compounds 2025:1032:181085. https://doi.org/10.1016/j.jallcom.2025.181085
  27. Zhilin W., Xiao L., Siyi D., Lichen L., Liliang S., Yuqiang Y., Zhengwu P., Jing Z., Haibo K., Liejun L., Weihua W. A strong and plastic Fe-based composite alloy with extremely high saturation magnetic flux density by constructing multiscale heterogeneous structure. Journal of Materials Science & Technology 2026:240:156–165. https://doi.org/10.1016/j.jmst.2025.02.081
  28. Wang G., Zhang Y., Bingkun Z., Liu Y., Zheng S., Li X., Yan W., Li Z., Wang Y. M. Enhanced plasticity due to melt pool flow induced uniform dispersion of reinforcing particles in additively manufactured metallic composites. International Journal of Plasticity 2023:164:103591. https://doi.org/10.1016/j.ijplas.2023.103591
  29. Zhang L., Sun J., Ngan A. H. W., Ning Z., Fan H., Huang Y. Heterogeneity of microstructures in a Cu–Zr based amorphous alloy composite reinforced by crystalline phases, Composites Part B. Engineering 2023:262:110823. https://doi.org/10.1016/j.compositesb.2023.110823
  30. Pu Y., Liang Y., Zhou Y., Chen Q., Gao T., Zhou L., Tian Z. Micro-mechanism of mechanical enhancement of NiTiAl amorphous-crystal nanomultilayers. International Journal of Mechanical Sciences 2025:288:110020. https://doi.org/10.1016/j.ijmecsci.2025.110020
  31. Pavlenko A., Koshlak H. Production of porous material with projected thermophysical characteristics. Metallurgical and Mining Industry 2015:7(1):123–127.
  32. Pavlenko A., Koshlak H., Usenko B. The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry 2014:6(3):55–59.
  33. Pavlenko A., Koshlak H., Usenko B. Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry 2014:6(6):96–100.
  34. Zhao W., Shan X., Kong X. R., Luo J., Li G. Quantitative analysis of the microstructure evolution of Al–Fe binary amorphous alloys caused by cooling rates based on atomic bond proportion. Journal of Material Science 2025:60:14160–14170. https://doi.org/10.1007/s10853-025-11236-3
  35. Zhao W., Cheng J. L., LI G. Quantitative analysis of structure evolution of Zr-Cu amorphous alloys caused by cooling rates based on atomic bond proportion. Computational Materials Science 2021:186:110011. https://doi.org/10.1016/j.commatsci.2020.110011
  36. He Y., Qin Y., Behmadi R., Hojati N., He Q., Chen C., Liu H., Yang W., Hojjati-Najafabadi A. Effect of cooling rate on the mechanical properties of amorphous alloy: From the perspective of heterogeneity. Materials Letters 2025:387:138239. https://doi.org/10.1016/j.matlet.2025.138239
  37. Radovanović-Perić F., Panžić I., Bafti A., Mandić V. Thermal and Thermomechanical Analysis of Amorphous Metals: A Compact Review. Applied Sciences 2024:14(17):7452. https://doi.org/10.3390/app14177452
  38. Li J., Lu W., Liu L., Fu L., Feng A. Study on crystal to amorphous transition of nickel-based alloy processed by ultra-short pulsed laser shock peening. Materials Letters 2024:366:136554. https://doi.org/10.1016/j.matlet.2024.136554.
  39. Lu W. N., Li J., Liu L., Ye Y. J., Pan H. J., Zhang Z., Feng A. X. Study on the spallation behavior of FeCoCrNiCu high-entropy alloy under laser shock peening at cryogenic temperature. Materials Letters 2025:388:138335. https://doi.org/10.1016/j.matlet.2025.138335
  40. Wang J., Xia J., Liu Z., Xu L., Liu J., Xiao Y., Gau J., Ru H., Jiao J. A comprehensive review of metal laser hardening: mechanism, process, and applications. The International Journal of Advanced Manufacturing Technology 2024:134:5087–5115. https://doi.org/10.1007/s00170-024-14463-1
  41. Senthil Kumar P., Jegadheesan C., Somasundaram P., Praveen Kumar S., Vivek Anand A., Singh A. P., Jeyaprakash N. Review on laser surface hardening of alloy metals. Materials Today: Proceedings 2023. https://doi.org/10.1016/j.matpr.2023.04.259
  42. Sahu A., Janardhan N., Amireddy K. K., Chinta V. S., Patnaik L., Singh L. K. Aluminum-Based Amorphous Alloys and Composites Synthesized Via Powder Metallurgy Route: A Review. Powder Metallurgy and Metal Ceramics 2025:63:654–669. https://doi.org/10.1007/s11106-025-00493-1
  43. Sun C., Zhou X., Lu J., Xie L., Li R., Wu Y., Dan X., Zhang M. Formation of Al-based Metallic Glasses Composites Prepared by Cold Spraying. Journal of Thermal Spray Technology 2022:31:1844–1859. https://doi.org/10.1007/s11666-022-01406-z
  44. Ratzker B., Sokol M. Exploring the capabilities of high-pressure spark plasma sintering (HPSPS): A review of materials processing and properties. Materials & Design 2023:233:112238. https://doi.org/10.1016/j.matdes.2023.112238
  45. Babalola B. J., Ayodele O. O., Olubambi P. A. Sintering of nanocrystalline materials: Sintering parameters. Heliyon 2023:9(3):e14070. https://doi.org/10.1016/j.heliyon.2023.e14070
  46. Pavlenko A., Usenko B., Koshlak A. Analysis of thermal peculiarities of alloying with special properties. Metallurgical and Mining Industry 2014:6(2):15–19.
  47. Lin T.-N., Liao P.-H., Wang C.-C., Lee H.-B., Tsay L.-W. Corrosion Resistance of Fe-Based Amorphous Films Prepared by the Radio Frequency Magnetron Sputter Method. Materials 2024:17(9):2071. https://doi.org/10.3390/ma17092071
  48. Liao P-H, Jian J-W, Tsay L-W. The Corrosion andWear-Corrosion of the Iron-Base Amorphous Coating Prepared by the HVOF Spraying. Metals 2023:13(6):1137. https://doi.org/10.3390/met13061137
  49. Nayak S. K., Faridi Md A., Gopi M., Kumar A., Laha T. Fe-based metallic glass composite coatings by HVOF spraying: Influence of Mo on phase evolution, wear and corrosion resistance. Materials Characterization 2022:191:112149. https://doi.org/10.1016/j.matchar.2022.112149
  50. Ning W., Zhai H., Xiao R., He D., Liang G., Wu Y., Li W., Li X. The Corrosion Resistance Mechanism of Fe-Based Amorphous Coatings Synthesised by Detonation Gun Spraying. Journal of Materials Engineering and Performance 2020:29:3921–3929. https://doi.org/10.1007/s11665-020-04876-w
  51. Basok B., Davydenko B., Pavlenko A. M. Numerical Network Modeling of Heat and Moisture Transfer through Capillary-Porous Building Materials. Materials 2021:14(8):1819. https://doi.org/10.3390/ma14081819
  52. Pavlenko A., Usenko B., Koshlak A. Thermal conductivity of the gas in small space. Metallurgical and Mining Industry 2014:6(2):20–24.
  53. Koshlak H., Pavlenko A. Mathematical model of particle free settling in a vortex apparatus. Rocznik Ochrona Srodowiska 2020:22(2):727–734.
  54. Radchenko M., Radchenko A., Trushliakov E., Pavlenko A., Radchenko R. Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast On-Site Operation – Part 1: General Approaches and Criteria. Energies 2023:16(3):1381. https://doi.org/10.3390/en16031381
  55. Pavlenko A. Peculiarities of Modelling of Vapour-Liquid Flows of Bubble Structure. Environmental and Climate Technologies 2025:29(1):128–136. https://doi.org/10.2478/rtuect-2025-0009
  56. Cao X., Zhang E., Bai X., Ji J., Sun J. Experimental Study on Temperature-time Characteristics of Loess under the Freeze-Thaw Cycles. Environmental and Climate Technologies 2025:29(1):84–96. https://doi.org/10.2478/rtuect-2025-0006
DOI: https://doi.org/10.2478/rtuect-2025-0058 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 865 - 879
Submitted on: Sep 9, 2025
|
Accepted on: Oct 21, 2025
|
Published on: Nov 28, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Anatoliy Pavlenko, Borys Basok, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.