Have a personal or library account? Click to login
Sustainability Trade-offs in Biochar Production Cover

References

  1. Communication from the commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 2019.
  2. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Official Journal of the European Union 2021 L 243/1.
  3. Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (Text with EEA relevance) Text with EEA relevance. 2023.
  4. Klimata un enerģētikas ministrija. Nacionālais enerģētikas un klimata plāns 2021.–2030. gadam (Ministry of Climate and Energy. National Energy and Climate Plan 2021–2030). [Online]. [Accessed 04.11.2024]. Available: https://www.kem.gov.lv/lv/nacionalais-energetikas-un-klimata-plans-2021-2030-gadam (In Latvian).
  5. Latvia`s National Inventory Report under the UNFCCC Greenhouse Gas Emissions in Latvia from 1990 to 2022. 2024. [Online]. [Accessed 04.11.2024]. Available: https://unfccc.int/ghg-inventories-annex-i-parties/2024
  6. Brad A., Schneider E. Carbon dioxide removal and mitigation deterrence in EU climate policy: Towards a research approach. Environmental Science & Policy 2023:150:103591. https://doi.org/10.1016/j.envsci.2023.103591
  7. European Parliament. Carbon dioxide removal: Nature-based and technological solutions. 2021. [Online]. [Accessed 04.11.2024]. Available: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689336
  8. IATA. Carbon Dioxide Removal (CDR) Technologies An overview of the different methods for capturing and storing carbon dioxide from the atmosphere. 2025. [Online]. [Accessed 12.06.2025]. Available: https://www.iata.org/globalassets/iata/publications/sustainability/carbon-dioxide-removal-cdr-technologies-facts.pdf
  9. Vaccari F. P., et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 2011:34(4):231–238. https://doi.org/10.1016/j.eja.2011.01.006
  10. He D., Luo Y., Zhu B. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Science of the Total Environment 2024:922:171259. https://doi.org/10.1016/j.scitotenv.2024.171259
  11. Gao Y. et al. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: A meta-analysis. European Journal of Agronomy 2021:130:126345. https://doi.org/10.1016/j.eja.2021.126345
  12. Amalina F., Razak A. S. A., Krishnan S., Sulaiman H., Zularisam A. W., Nasrullah M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances 2022:7:100134. https://doi.org/10.1016/j.hazadv.2022.100134
  13. Chen J. et al. A complete review on the oxygen-containing functional groups of biochar: Formation mechanisms, detection methods, engineering, and applications. Science of the Total Environment 2024:946:174081. https://doi.org/10.1016/j.scitotenv.2024.174081
  14. Tomczyk A., Sokołowska Z., Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 2020:19(1):191–215. https://doi.org/10.1007/s11157-020-09523-3
  15. Rajput V. et al. Biochar production methods and their transformative potential for environmental remediation. Discover Applied Science 2024:6(8):408. https://doi.org/10.1007/s42452-024-06125-4
  16. Lefebvre D., Fawzy S., Aquije C., Osman A. I., Draper K., Trabold T. A. Biomass residue to carbon dioxide removal: quantifying the global impact of biochar. Biochar 2023:5:65. https://doi.org/10.1007/s42773-023-00258-2
  17. C. B. E et al., IPCC 2019, 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 4. Intergovernmental Panel on Climate Change, 2019. [Online]. [Accessed 04.11.2024]. Available: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Generic%20Methods.pdf
  18. Waheed A. et al. Biochar in sustainable agriculture and Climate Mitigation: Mechanisms, challenges, and applications in the circular bioeconomy. Biomass Bioenergy 2025:193:107531. https://doi.org/10.1016/j.biombioe.2024.107531
  19. Wang L., Chen D., Zhu L. Biochar carbon sequestration potential rectification in soils: Synthesis effects of biochar on soil CO2, CH4 and N2O emissions. Science of the Total Environment 2023:904:167047. https://doi.org/10.1016/j.scitotenv.2023.167047
  20. Li S., Tasnady D. Biochar for Soil Carbon Sequestration: Current Knowledge, Mechanisms, and Future Perspective. Journal of Carbon Research 2023:9(3):67. https://doi.org/10.3390/c9030067
  21. Nematian M., Keske C., Ng’ombe J. N. A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Management 2021:135:467–477. https://doi.org/10.1016/j.wasman.2021.09.014
  22. Sahoo K., Bilek E., Bergman R., Mani S. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Applied Energy 2019:235:578–590. https://doi.org/10.1016/j.apenergy.2018.10.076
  23. CORC Biochar Price Index CORCCHAR. [Online]. [Accessed 02.05.2025]. Available: https://puro.earth/corccarbon-removal-indexes
  24. Campion L., Bekchanova M., Malina R., Kuppens T. The costs and benefits of biochar production and use: A systematic review. Journal of Cleaner Production 2023:408:137138. https://doi.org/10.1016/j.jclepro.2023.137138
  25. Bach M., Wilske B., Breuer L. Current economic obstacles to biochar use in agriculture and climate change mitigation. Carbon Management 2016:7:3–4. https://doi.org/10.1080/17583004.2016.1213608
  26. Safarian S. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Reports 2023:9:4574–4593. https://doi.org/10.1016/j.egyr.2023.03.111
  27. Wystalska K., Malińska K., Włodarczyk R., Chajczyk O. Effects of pyrolysis parameters on the yield and properties of biochar from pelletized sunflower husk. E3S Web of Conferences 2018:44:00197. https://doi.org/10.1051/e3sconf/20184400197
  28. K. K. V and N. L. Panwar, Pyrolysis technologies for biochar production in waste management: a review. Clean Energy 2024:8(4):61–78. https://doi.org/10.1093/ce/zkae036
  29. Fryda L., Visser R. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture 2015:5(4):1076–1115. https://doi.org/10.3390/agriculture5041076
  30. Cinelli M., Coles S. R., Kirwan K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators 2014:46:138–148. https://doi.org/10.1016/j.ecolind.2014.06.011
  31. Jiang Y., Li T., Xu X., Sun J., Pan G., Cheng K. A global assessment of the long-term effects of biochar application on crop yield. Current Research in Environmental Sustainability 2024:7:100247. https://doi.org/10.1016/j.crsust.2024.100247
  32. Li Q., Zhang X., Mao M., Wang X., Shang J. Carbon content determines the aggregation of biochar colloids from various feedstocks. Science of the Total Environment 2023:880:163313. https://doi.org/10.1016/j.scitotenv.2023.163313
  33. Amonette J. E. et al. Biomass to biochar: Maximizing the carbon value.
  34. Lehmann J., Joseph S., Eds., Biochar for environmental management: science and technology. London; Sterling, VA: Earthscan, 2009.
  35. Sun J., He F., Pan Y., Zhang Z. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science 2017:67(1):12–22. https://doi.org/10.1080/09064710.2016.1214745
  36. Ganesapillai M. et al. Waste to energy: A review of biochar production with emphasis on mathematical modelling and its applications. Heliyon 2023:9(4):e14873. https://doi.org/10.1016/j.heliyon.2023.e14873
  37. Ye L., Camps‐Arbestain M., Shen Q., Lehmann J., Singh B., Sabir M. Biochar effects on crop yields with and without fertilizer: A meta‐analysis of field studies using separate controls. Soil Use and Management 2020:36(1):2–18. https://doi.org/10.1111/sum.12546
  38. Subedi R., Bertora C., Zavattaro L., Grignani C. Crop Response to Soils Amended with Biochar: Expected Benefits and Unintended Risks. Ital. J. Agron. 2017:12(2):794. https://doi.org/10.4081/ija.2017.794
  39. Chun Y., Lee S. K., Yoo H. Y., Kim S. W. Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. BioResources 2021:16(3):6512–6547. https://doi.org/10.15376/biores.16.3.Chun
  40. Naeem M. A., Khalid M., Arshad M., Ahmad R. Yield and Nutrient Composition of Biochar Produced from Different Feedstocks at Varying Pyrolytic Temperatures.
  41. Sedmihradská A. et al. Pyrolysis of wheat and barley straw. Research in Agricultural Engineering 2020:66(1):8–17. https://doi.org/10.17221/26/2019-RAE
  42. Seow Y. X. et al. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering 2022:10(1):107017. https://doi.org/10.1016/j.jece.2021.107017
  43. Zhang P., Duan W., Peng H., Pan B., Xing B. Functional Biochar and Its Balanced Design. ACS Environmental Au 2022:2(2):115–127. https://doi.org/10.1021/acsenvironau.1c00032
  44. Khanmohammadi Z., Afyuni M., Mosaddeghi M. R. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management & Research: The Journal of Sustainable Circular Economy 2015:33(3):275–283. https://doi.org/10.1177/0734242X14565210
  45. Agrafioti E., Bouras G., Kalderis D., Diamadopoulos E. Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis 2013:101:72–78. https://doi.org/10.1016/j.jaap.2013.02.010
  46. Zhao L. et al. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Research X 2023:18:100167. https://doi.org/10.1016/j.wroa.2023.100167
  47. Kuryntseva P., Karamova K., Galitskaya P., Selivanovskaya S., Evtugyn G. Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties. Agriculture 2023:13(10). https://doi.org/10.3390/agriculture13102003
  48. Al-Rumaihi A., Shahbaz M., Mckay G., Mackey H., Al-Ansari T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews 2022:167:112715. https://doi.org/10.1016/j.rser.2022.112715
  49. Zhang L. et al. Meta-Analysis of the Response of the Productivity of Different Crops to Parameters and Processes in Soil Nitrogen Cycle under Biochar Addition. Agronomy 2022:12(8):1857. https://doi.org/10.3390/agronomy12081857
  50. Kumar V. K., Panwar N. L. Pyrolysis technologies for biochar production in waste management: a review. Clean Energy 2024:8(4):61–78. https://doi.org/10.1093/ce/zkae036
  51. Suresh Babu K. K. B., Nataraj M., Tayappa M., Vyas Y., Mishra R. K., Acharya B. Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Material Science for Energy Technology 2024:7:318–334. https://doi.org/10.1016/j.mset.2024.05.002
  52. Sharma S. et al. Biochar as a Potential Nutrient Carrier for Agricultural Applications. Current Pollution Reports 2025:11(1):19. https://doi.org/10.1007/s40726-025-00349-7
  53. Jeffery S., Verheijen F. G. A., Van Der Velde M., Bastos A. C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems and Environment 2011:144(1):175–187. https://doi.org/10.1016/j.agee.2011.08.015
  54. Mcintyre H., Li S. From Waste to Resource: Evaluating the Impact of Biosolid-Derived Biochar on Agriculture and the Environment. Biomass 2024:4(3):809–825. https://doi.org/10.3390/biomass4030045
  55. Keske C., Godfrey T., Hoag D. L. K., Abedin J. Economic feasibility of biochar and agriculture coproduction from Canadian black spruce forest. Food and Energy Security 2020:9(1):e188. https://doi.org/10.1002/fes3.188
  56. Han M., Zhang J., Zhang L., Wang Z. Effect of biochar addition on crop yield, water and nitrogen use efficiency: A meta-analysis. Journal of Cleaner Production 2023:420:138425. https://doi.org/10.1016/j.jclepro.2023.138425
  57. Patel M. R., Panwar N. L. Evaluating the agronomic and economic viability of biochar in sustainable crop production. Biomass Bioenergy 2024:188:107328. https://doi.org/10.1016/j.biombioe.2024.107328
  58. Li S., Chen G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Management 2018:78:198–207. https://doi.org/10.1016/j.wasman.2018.05.048
  59. Javaid S. F. et al. Production of Biochar by Slow and Solar-Biomass Pyrolysis: Focus on the Output Configuration Assessment, Adaptability, and Barriers to Market Penetration. Arabian Journal for Science and Engineering 2024:49(6):7731–7750. https://doi.org/10.1007/s13369-023-08549-3
  60. Guerrero J., Sala S., Fresneda-Cruz A., Bolea I., Carmona-Martínez A. A., Jarauta-Córdoba C. Techno-Economic Feasibility of Biomass Gasification for the Decarbonisation of Energy-Intensive Industries. Energies 2023:16(17):6271. https://doi.org/10.3390/en16176271
  61. Andrew R., Gokak D. T., Sharma P., Sharma J., Somkuwar N., Gupta S. Practical Achievements on Biomass Steam Gasification in a Rotary Tubular Coiled-downdraft Reactor. Procedia Environmental Sciences 2016:35:818–825. https://doi.org/10.1016/j.proenv.2016.07.098
  62. Kumari K., Kumar R., Bordoloi N., Minkina T., Keswani C., Bauddh K. Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems. Agriculture 2023:13(3):512. https://doi.org/10.3390/agriculture13030512
  63. Safarian S. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Reports 2023:9:4574–4593. https://doi.org/10.1016/j.egyr.2023.03.111
  64. Wang L., Zhou T., Hou B., Yang H., Hu N., Zhang M. A Comprehensive Review of Biomass Gasification Characteristics in Fluidized Bed Reactors: Progress, Challenges, and Future Directions. Fluids 2025:10(6):147. https://doi.org/10.3390/fluids10060147
  65. Pulka J., Wiśniewski D., Gołaszewski J., Białowiec A. Is the biochar produced from sewage sludge a good quality solid fuel? Archives of Environmental Protection 2016:42(4):125–134. https://doi.org/10.1515/aep-2016-0043
  66. You S. et al. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology 2017:246:242–253. https://doi.org/10.1016/j.biortech.2017.06.177
  67. Madanchian M., Taherdoost H. A comprehensive guide to the TOPSIS method for multi-criteria decision making. Sustainable Social Development 2023:1(1). https://doi.org/10.54517/ssd.v1i1.2220
  68. Tzeng G.-H., Huang J.-J. Multiple Attribute Decision Making: Methods and Applications.
  69. Safronova A., Barisa A., Kirsanovs V. Linking Sustainable Mobility Criteria to Policymaking: Results of Multi-Criteria Analysis. EAI Endorsed Trans. Energy Web 2022:9(39):e7. https://doi.org/10.4108/ew.v9i39.1549
  70. Ahmed S. F. et al. Biochar produced from waste‐based feedstocks: Mechanisms, affecting factors, economy, utilization, challenges, and prospects. GCB Bioenergy 2024:16(8):e13175. https://doi.org/10.1111/gcbb.13175
  71. Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A. R., Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 2012:48(3):271–284. https://doi.org/10.1007/s00374-011-0624-7
  72. Cao J. et al. Sludge-based biochar preparation: pyrolysis and co-pyrolysis methods, improvements, and environmental applications. Fuel 2024:373:132265. https://doi.org/10.1016/j.fuel.2024.132265
  73. Elnour A. Y. et al. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Applied Science 2019:9(6):1149. https://doi.org/10.3390/app9061149
  74. Elkhalifa S., Mackey H. R., Al-Ansari T., McKay G. Pyrolysis of Biosolids to Produce Biochars: A Review. Sustainability 2022:14(15):9626. https://doi.org/10.3390/su14159626
  75. Domingues R. R. et al. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLOS ONE 2017:12(5):1–19. https://doi.org/10.1371/journal.pone.0176884
DOI: https://doi.org/10.2478/rtuect-2025-0057 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 851 - 864
Submitted on: Aug 1, 2025
|
Accepted on: Oct 8, 2025
|
Published on: Nov 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Valerija Kostevica, Anna Kubule, Ilze Vamza, Toms Irbe, Marika Rosa, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.