References
- Anukam A., Mohammadi A., Naqvi M., Granström K. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes 2019:7(8):504. https://doi.org/10.3390/pr7080504
- Kumar S. S. et al. The role of conductive nanoparticles in anaerobic digestion: Mechanism, current status and future perspectives. Chemosphere 2021:280:130601. https://doi.org/10.1016/j.chemosphere.2021.130601
- Romagnoli F., Blumberga D., Gigli E. Biogas from Marine Macroalgae: A New Environmental Technology – Life Cycle Inventory for a Further LCA. Environmental and Climate Technologies 2010:4(1):97–108. https://doi.org/10.2478/v10145-010-0024-5
- Arif S., Liaquat R., Adil M. Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews 2018:97:354–366. https://doi.org/10.1016/j.rser.2018.08.039
- El Nemr A., Hassaan M. A., Elkatory M. R., Ragab S., Pantaleo A. Efficiency of fe3o4 nanoparticles with different pretreatments for enhancing biogas yield of macroalgae Ulva intestinalis Linnaeus. Molecules 2021:26(16):5105. https://doi.org/10.3390/molecules26165105
- Hansson P. A., Fredriksson H. Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agriculture, Ecosystems & Environment 2004:102(3):365–375. https://doi.org/10.1016/j.agee.2003.08.005
- Czubaszek R., Wysocka-Czubaszek A., Wichtmann W., Banaszuk P. Specific methane yield of wetland biomass in dry and wet fermentation technologies. Energies (Basel) 2021:14(24):8373. https://doi.org/10.3390/en14248373
- Stipniece-Jekimova A. A., Teirumnieka E., Blumberga D. When Reed Application is Sustainable. Environmental and Climate Technologies 2022:26(1):697–707. https://doi.org/10.2478/rtuect-2022-0053
- Kumar S. S. et al. The role of conductive nanoparticles in anaerobic digestion: Mechanism, current status and future perspectives. Chemosphere 2021:280:130601. https://doi.org/10.1016/j.chemosphere.2021.130601
- Sfetsas T., Panou M., Chioti A. G., Prokopidou N., Dalla I. The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant. Methane 2023:2(3):329–343. https://doi.org/10.3390/methane2030022
- Elsayed A. et al. Application of additives for anaerobic digestion intensification: A comprehensive review on improving biogas production and methane yield. Applied Energy 2025:381:125202. https://doi.org/10.1016/j.apenergy.2024.125202
- Qiang H., Lang D. L., Li Y. Y. High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements. Bioresource Technology 2012:103(1):21–27. https://doi.org/10.1016/j.biortech.2011.09.036
- Pilarska A. A. et al. Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review. Energies 2024:17(7):4506. https://doi.org/10.3390/en17174506
- Manikandan S. et al. Emerging nanotechnology in renewable biogas production from biowastes: Impact and optimization strategies – A review. Renewable and Sustainable Energy Reviews 2023:181:113345. https://doi.org/10.1016/j.rser.2023.113345
- Abdelsalam E., Samer M., Attia Y. A., Abdel-Hadi M. A., Hassan H. E., Badr Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 2017:120:842–853. https://doi.org/10.1016/j.energy.2016.11.137
- Kökdemir Ünşar E., Perendeci N. A. What kind of effects do Fe2O3 and Al2O3 nanoparticles have on anaerobic digestion, inhibition or enhancement? Chemosphere 2018:211:726–735. https://doi.org/10.1016/j.chemosphere.2018.08.014
- Barrena R., Moral-Vico J., Font X., Sánchez A. Enhancement of Anaerobic Digestion with Nanomaterials: A Mini Review. Energies 2022:15(4):5087. https://doi.org/10.3390/en15145087
- Jadhav P., Bin Khalid Z., Zularisam A. W., Krishnan S., Nasrullah M. The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. Environmental Research 2022:204:112043. https://doi.org/10.1016/j.envres.2021.112043
- Xu X. J. et al. Enhanced methane production in anaerobic digestion: A critical review on regulation based on electron transfer. Bioresource Technology 2022:364:128003. https://doi.org/10.1016/j.biortech.2022.128003
- González R., Peña D. C., Gómez X. Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences 2022:12(17):8884. https://doi.org/10.3390/app12178884
- Tian Y. et al. Synergy between bacteria and fungi contributes to biodegradation and methane production of lignocellulosic anaerobic co-digestion exposing to surfactants. Journal of Environmental Management 2025:373:123579. https://doi.org/10.1016/j.jenvman.2024.123579
- Kelif Ibro M., Ramayya Ancha V., Beyene Lemma D. Biogas Production Optimization in the Anaerobic Codigestion Process: A Critical Review on Process Parameters Modeling and Simulation Tools. Journal of Chemistry 2024:1:4599371. https://doi.org/10.1155/2024/4599371
- Xing B. S. et al. A compound enzyme as an additive to a continuous anaerobic dynamic membrane bioreactor for enhanced lignocellulose removal from codigestion: Performance, membrane characteristics and microorganisms. Bioresource Technology 2024:402:130772. https://doi.org/10.1016/j.biortech.2024.130772
- Paritosh K. et al. Additives as a Support Structure for Specific Biochemical Activity Boosts in Anaerobic Digestion: A Review. Frontiers in Energy Research 2020:8. https://doi.org/10.3389/fenrg.2020.00088
- Lee J. H., Kim S. Y., Yoon Y. M. Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater. Processes 2023:11(3):759. https://doi.org/10.3390/pr11030759
- Wang H., Zhang W., Xing W., Li R. Review on Mechanisms of Iron Accelerants and Their Effects on Anaerobic Digestion. Agriculture 2025:15(7):728. https://doi.org/10.3390/agriculture15070728
- Salazar-Batres K. J., Moreno-Andrade I. Review of the Effects of Trace Metal Concentrations on the Anaerobic Digestion of Organic Solid Waste. Bioenergy Research 2025:18:24. https://doi.org/10.1007/s12155-025-10826-y
- González-Suárez A., Pereda-Reyes I., Oliva-Merencio D., Montalvo-Martínez S. J. Speciation of iron, nickel and cobalt in the anaerobic biodegradation of rice straw. Revista Facultad de Ingenieria 2021:101:53–63. https://doi.org/10.17533/udea.redin.20200366
- Al-Iraqi A. R., Gandhi B. P., Folkard A. M., Barker P. A., Semple K. T. Biogas production from anaerobic digestion of Phragmites australis: influence of mechanical pre-treatment, harvesting season and co-digestion with food waste. 2025. https://doi.org/10.21203/rs.3.rs-4351506/v1
- Alvira P., Tomás-Pejó E., Ballesteros M., Negro M. J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 2010:101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
- Hosseini Koupaie E., Dahadha S., Bazyar Lakeh A. A., Azizi A., Elbeshbishy E. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production. A review. Journal of Environmental Management 2019:233:774–784. https://doi.org/10.1016/j.jenvman.2018.09.106
- Al-Iraqi A. R., Gandhi B. P., Folkard A. M., Barker P. A., Semple K. T. Influence of Inoculum to Substrate Ratio and Substrates Mixing Ratio on Biogas Production from the Anaerobic Co-digestion of Phragmites australis and Food Waste. Bioenergy Research 2023:17:1277–1287. https://doi.org/10.1007/s12155-023-10689-1
- Khan S. Z., Zaidi A. A., Naseer M. N., AlMohamadi. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Frontiers in Bioengineering and Biotechnology 2022:10. https://doi.org/10.3389/fbioe.2022.868454
- Romero-Güiza M. S., Vila J., Mata-Alvarez J., Chimenos J. M., Astals S. The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews 2016:58:1486–1499. https://doi.org/10.1016/j.rser.2015.12.094
- Khanna K. et al. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety 2021:222:112459. https://doi.org/10.1016/j.ecoenv.2021.112459