References
- Vivian J., Heer P., Fiorentini M. Optimal sizing and operation of seasonal ice thermal storage systems. Energy and Buildings 2023:300:113633. https://doi.org/10.1016/j.enbuild.2023.113633
- Mancin S., Noro M. Reversible Heat Pump Coupled with Ground Ice Storage for Annual Air Conditioning: An Energy Analysis. Energies 2020:13(23):6182. https://doi.org/10.3390/en13236182
- Merve Altuntas and Dogan Erdemir. An investigation on potential use of ice thermal energy storage system as energy source for heat pumps. Journal of Energy Storage 2022:55:105588. https://doi.org/10.1016/j.est.2022.105588
- Carbonell D., Philippen D., Haller M. Y., Brunold S. Modeling of an ice storage buried in the ground for solar heating applications. Validations with one year of monitored data from a pilot plant. Solar Energy 2016:125:398–414. https://doi.org/10.1016/j.solener.2015.12.009
- Chengjun Li et al. Dynamic heat transfer characteristics of ice storage in smooth-tube and corrugated-tube heat exchangers. Applied Thermal Engineering 2023:223:120037. https://doi.org/10.1016/j.applthermaleng.2023.120037
- Colangelo A., Guelpa E., Lanzini A., Mancò G., Verda V. Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems. Applied Sciences 2020:10(24):8970. https://doi.org/10.3390/app10248970
- Steinmaurer G., Krupa M., Kefer P. Development of Sensors for Measuring the Enthalpy of PCM Storage Systems. International Conference on Solar Heating and Cooling for Building and Industry, September 23–25, 2013, Freiburg, Germany. https://doi.org/10.1016/j.egypro.2014.02.052
- Ezan M. A., Çetin L., Erek A. Ice thickness measurement method for thermal energy storage unit. DergiPark (Istanbul University). https://dergipark.org.tr/tr/pub/isibted/issue/33980/376134
- Zsembinszki G., Orozco C., Gasia J., Barz T., Emhofer J., Cabeza L. F. Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank. Energies 2020:13(6):1425. https://doi.org/10.3390/en13061425
- Tiwari V., Rai A. C., Srinivasan P. Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions. Renewable Energy 2021:174:305–319. https://doi.org/10.1016/j.renene.2021.04.073
- Ajarostaghi S. S. M., Poncet S., Sedighi K., Delavar M. A. Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences 2019:9(13):2726. https://doi.org/10.3390/app9132726
- Barz T. et al. State and state of charge estimation for a latent heat storage. Control Engineering Practice 2018:72:151–166. https://doi.org/10.1016/j.conengprac.2017.11.006
- Mehmood T., Shah N. u. H., Ali M., Biwole P. H., Sheikh N. A. Simplified mathematical model and experimental analysis of latent thermal energy storage for concentrated solar power plants. Journal of Energy Storage 2021:41:102871. https://doi.org/10.1016/j.est.2021.102871
- Bastida H., Ugalde-Loo C. E., Abeysekera M., Jenkins N. Dynamic modelling of ice‐based thermal energy storage for cooling applications. IET Energy Systems Integration Volume 2022:4(3)317–334. https://doi.org/10.1049/esi2.12061
- Bastida H., de La Cruz-Loredo I., Ugalde-Loo C. E. Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers. Applied Energy 2023:331:120448. https://doi.org/10.1016/j.apenergy.2022.120448
- Zhi X., Cho H. C., Wang B., Ahn C. H., Moon H. S., Go J. S. Development of a capacitive ice sensor to measure ice growth in real time. Sensors (Basel, Switzerland) 2015:15(3):6688–6698. https://doi.org/10.3390/s150306688
- Owusu K. P., Kuhn D. C., Bibeau E. L. Capacitive probe for ice detection and accretion rate measurement: Proof of concept. Renewable Energy 2013:50:196–205. http://doi.org/10.1016/j.renene.2012.06.003
- Artemov V. G., Volkov A. A. Water and Ice Dielectric Spectra Scaling at 0°C. Ferroelectrics 2014:466(1):158–165. https://doi.org/10.1080/00150193.2014.895216
- Artemov V. G., Ryzhkin I. A., Sinitsyn V. V. Similarity of the dielectric relaxation processes and transport characteristics in water and ice. JETP Letters 2015:102(1):41–45. https://doi.org/10.1134/S0021364015130020
- Dou Y., Qin J., Chang X. The Study of a Capacitance Sensor and its System Used in Measuring Ice Thickness, Sedimentation and Water Level of a Reservoir. In International Forum on Information Technology and Applications, Chengdu, China, 2009. https://doi.org/10.1109/IFITA.2009.79
- Volkov A. A., Vasin A. A. Dielectric properties of water and ice: a unified treatment. Ferroelectrics 2019:538(1):83–88. https://doi.org/10.1080/00150193.2019.1569989
- Cyril, B. K., Boby, G. A capacitive sensing system for Non-Contact: detection of ice. International Journal on Smart Sensing and Intelligent Systems 2014:7(5):1–6. https://doi.org/10.21307/ijssis-2019-098
- CARNOT Toolbox Ver.8.02 for Matlab/Simulink R2021b, © Solar-Institut Jülich.
- Philippen D., Logie W., Thalmann M., Haller M. Y., Brunold S., Elimar F. Development of a heat exchanger that can be de-iced for the use in ice stores in solar thermal heat pump systems. EuroSun2012, ISES-Europe Solar Conference, Rijeka, Croatia, 18–20 September 2012.
- Carbonell D., Philippen D., Haller M. Y., Frank E. Development and Validation of a Mathematical Model for Ice Storages with Heat Exchangers that can be De-iced. Energy Procedia 2014:57:2342–2351. https://doi.org/10.1016/j.egypro.2014.10.242
- HB Products, Ice bank sensor – product description and datasheet 2022. [Online]. [Accessed 08.09.2025]. Available: https://www.hbproducts.dk/images/product_files/Datasheets/Ice_Bank_Sensor.pdf