Have a personal or library account? Click to login
Modelling and Experimental Characterization of Ice Storage for State of Charge Determination Cover

Modelling and Experimental Characterization of Ice Storage for State of Charge Determination

Open Access
|Nov 2025

References

  1. Vivian J., Heer P., Fiorentini M. Optimal sizing and operation of seasonal ice thermal storage systems. Energy and Buildings 2023:300:113633. https://doi.org/10.1016/j.enbuild.2023.113633
  2. Mancin S., Noro M. Reversible Heat Pump Coupled with Ground Ice Storage for Annual Air Conditioning: An Energy Analysis. Energies 2020:13(23):6182. https://doi.org/10.3390/en13236182
  3. Merve Altuntas and Dogan Erdemir. An investigation on potential use of ice thermal energy storage system as energy source for heat pumps. Journal of Energy Storage 2022:55:105588. https://doi.org/10.1016/j.est.2022.105588
  4. Carbonell D., Philippen D., Haller M. Y., Brunold S. Modeling of an ice storage buried in the ground for solar heating applications. Validations with one year of monitored data from a pilot plant. Solar Energy 2016:125:398–414. https://doi.org/10.1016/j.solener.2015.12.009
  5. Chengjun Li et al. Dynamic heat transfer characteristics of ice storage in smooth-tube and corrugated-tube heat exchangers. Applied Thermal Engineering 2023:223:120037. https://doi.org/10.1016/j.applthermaleng.2023.120037
  6. Colangelo A., Guelpa E., Lanzini A., Mancò G., Verda V. Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems. Applied Sciences 2020:10(24):8970. https://doi.org/10.3390/app10248970
  7. Steinmaurer G., Krupa M., Kefer P. Development of Sensors for Measuring the Enthalpy of PCM Storage Systems. International Conference on Solar Heating and Cooling for Building and Industry, September 23–25, 2013, Freiburg, Germany. https://doi.org/10.1016/j.egypro.2014.02.052
  8. Ezan M. A., Çetin L., Erek A. Ice thickness measurement method for thermal energy storage unit. DergiPark (Istanbul University). https://dergipark.org.tr/tr/pub/isibted/issue/33980/376134
  9. Zsembinszki G., Orozco C., Gasia J., Barz T., Emhofer J., Cabeza L. F. Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank. Energies 2020:13(6):1425. https://doi.org/10.3390/en13061425
  10. Tiwari V., Rai A. C., Srinivasan P. Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions. Renewable Energy 2021:174:305–319. https://doi.org/10.1016/j.renene.2021.04.073
  11. Ajarostaghi S. S. M., Poncet S., Sedighi K., Delavar M. A. Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences 2019:9(13):2726. https://doi.org/10.3390/app9132726
  12. Barz T. et al. State and state of charge estimation for a latent heat storage. Control Engineering Practice 2018:72:151–166. https://doi.org/10.1016/j.conengprac.2017.11.006
  13. Mehmood T., Shah N. u. H., Ali M., Biwole P. H., Sheikh N. A. Simplified mathematical model and experimental analysis of latent thermal energy storage for concentrated solar power plants. Journal of Energy Storage 2021:41:102871. https://doi.org/10.1016/j.est.2021.102871
  14. Bastida H., Ugalde-Loo C. E., Abeysekera M., Jenkins N. Dynamic modelling of ice‐based thermal energy storage for cooling applications. IET Energy Systems Integration Volume 2022:4(3)317–334. https://doi.org/10.1049/esi2.12061
  15. Bastida H., de La Cruz-Loredo I., Ugalde-Loo C. E. Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers. Applied Energy 2023:331:120448. https://doi.org/10.1016/j.apenergy.2022.120448
  16. Zhi X., Cho H. C., Wang B., Ahn C. H., Moon H. S., Go J. S. Development of a capacitive ice sensor to measure ice growth in real time. Sensors (Basel, Switzerland) 2015:15(3):6688–6698. https://doi.org/10.3390/s150306688
  17. Owusu K. P., Kuhn D. C., Bibeau E. L. Capacitive probe for ice detection and accretion rate measurement: Proof of concept. Renewable Energy 2013:50:196–205. http://doi.org/10.1016/j.renene.2012.06.003
  18. Artemov V. G., Volkov A. A. Water and Ice Dielectric Spectra Scaling at 0°C. Ferroelectrics 2014:466(1):158–165. https://doi.org/10.1080/00150193.2014.895216
  19. Artemov V. G., Ryzhkin I. A., Sinitsyn V. V. Similarity of the dielectric relaxation processes and transport characteristics in water and ice. JETP Letters 2015:102(1):41–45. https://doi.org/10.1134/S0021364015130020
  20. Dou Y., Qin J., Chang X. The Study of a Capacitance Sensor and its System Used in Measuring Ice Thickness, Sedimentation and Water Level of a Reservoir. In International Forum on Information Technology and Applications, Chengdu, China, 2009. https://doi.org/10.1109/IFITA.2009.79
  21. Volkov A. A., Vasin A. A. Dielectric properties of water and ice: a unified treatment. Ferroelectrics 2019:538(1):83–88. https://doi.org/10.1080/00150193.2019.1569989
  22. Cyril, B. K., Boby, G. A capacitive sensing system for Non-Contact: detection of ice. International Journal on Smart Sensing and Intelligent Systems 2014:7(5):1–6. https://doi.org/10.21307/ijssis-2019-098
  23. CARNOT Toolbox Ver.8.02 for Matlab/Simulink R2021b, © Solar-Institut Jülich.
  24. Philippen D., Logie W., Thalmann M., Haller M. Y., Brunold S., Elimar F. Development of a heat exchanger that can be de-iced for the use in ice stores in solar thermal heat pump systems. EuroSun2012, ISES-Europe Solar Conference, Rijeka, Croatia, 18–20 September 2012.
  25. Carbonell D., Philippen D., Haller M. Y., Frank E. Development and Validation of a Mathematical Model for Ice Storages with Heat Exchangers that can be De-iced. Energy Procedia 2014:57:2342–2351. https://doi.org/10.1016/j.egypro.2014.10.242
  26. HB Products, Ice bank sensor – product description and datasheet 2022. [Online]. [Accessed 08.09.2025]. Available: https://www.hbproducts.dk/images/product_files/Datasheets/Ice_Bank_Sensor.pdf
DOI: https://doi.org/10.2478/rtuect-2025-0052 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 784 - 796
Submitted on: Apr 11, 2025
Accepted on: Sep 8, 2025
Published on: Nov 10, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Christian Wagner, Gayaneh Issayan, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.