Orsag M., Meitner J., Fischer M. Estimating Heat Stress Effects on the Sustainability of Traditional Freshwater Pond Fishery Systems under Climate Change. Water 2023:15(8):1523. https://doi.org/10.3390/w15081523
Zdanek R., Lososova J., Mraz J. Long-term trends in the economy viability of pond aquaculture in Central Europe – The example of Czechia. Aquaculture 2025:598:742069. https://doi.org/10.1016/j.aquaculture.2024.742069
Galappaththi E., Ichien S., Hyman A., Aubrac C., Ford J. Climate change adaptation in aquaculture. Reviews in Aquaculture 2020:12(4):2160−2176. https://doi.org/10.1111/raq.12427
Reid G., Gurney-Smith H., Marcogliese D., Knowler D., Benfey T., Garber A., Silva S. Climate change and aquaculture: considering biological response and resources. Aquaculture Environment Interactions 2019:11:569−602. https://doi.org/10.3354/aei00332
Soto D., León‐Muñoz J., Dresdner J., Luengo C., Tapia F., Garreaud R. Salmon farming vulnerability to climate change in southern Chile: understanding the biophysical, socioeconomic and governance links. Reviews in Aquaculture 2019:11(2):354−374. https://doi.org/10.1111/raq.12336
Thúy P., Friðriksdóttir R., Weber C., Viðarsson J., Papandroulakis N., Baudron A., Aschan M. Guidelines for cocreating climate adaptation plans for fisheries and aquaculture. Climatic Change 2021:164:3–4. https://doi.org/10.1007/s10584-021-03041-z
Fitzer S., McGill R., Gabarda S., Hughes B., Dove M., O’Connor W., Byrne M. Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Global Change Biology 2019:25(12):4105–4115. https://doi.org/10.1111/gcb.14818
Cubillo A. M.., Silva J. L., Farereira J. G. Direct effects of climate change on productivity of European aquaculture. Aquaculture International 2021:29(1–2):1561–1590. https://doi.org/10.1007/s10499-021-00694-6
Stelzenmüller V., Töpsch S., Galparsoro I., Gubbins M., Miller D., Murillas A., G. A GIS-based tool for an integrated assessment of spatial planning trade-offs with aquaculture. Science of The Total Environment 2018:627:1644–1655. https://doi.org/10.1016/j.scitotenv.2018.01.133
Vistarte L., Pubule J., Balode L., Kaleja D., Bumbiere K. An Assessment of the Impact of Latvian New Common Agriculture Policy: Transition to Climate Neutrality. Environmental and Climate Technologies 2023:27(1):683–695. https://doi.org/10.2478/rtuect-2023-0050
Ringø E., Zhou Z., Vecino J. L. G., Wadsworth S., Romero J., Krogdahl Å., Merrifield D. L. Effect of dietary components on the gut microbiota of aquatic animals. Aquaculture Nutrition 2016:22(2):219–282. https://doi.org/10.1111/anu.12346
Xie J., Hu L., Tang J., Wu X., Li N., Yuan Y., Guo Z. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. Proceedings of the National Academy of Sciences 2011:108(50):E1381–E1387. https://doi.org/10.1073/pnas.1111043108
Akinwole A. O., Faturoti E. O. Biological performance of African catfish (Clarias gariepinus) cultured in recirculating system. Aquacultural Engineering 2007:36(1):18–23. https://doi.org/10.1016/j.aquaeng.2006.05.001
Macias-Corral M., Samani Z., Hanson A., Smith G., Funk P., Yu H., Longworth J. Anaerobic digestion of municipal solid waste and agricultural waste and the effect on biogas production. Bioresource Technology 2008:99(17):8288–8293. https://doi.org/10.1016/j.biortech.2008.03.043
Kostevica V., Dzikevics M. Bibliometric Analysis of the Climate Change Impact on Energy Systems. Environmental and Climate Technologies 2023:27(1):950−963. https://doi.org/10.2478/rtuect-2023-0069
Gozlan R. E., Britton J. R., Cowx I., Copp G. H. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 2010:76(4):751–786. https://doi.org/10.1111/j.1095-8649.2010.02566.x
Osipov S., Puckin A. The influence of temperature conditions on the yield of biogas and methane, which is obtained from aquaculture waste. Environment Technology Resources Proceedings of the International Scientific and Practical Conference 2023:1:166–170. https://doi.org/10.17770/etr2023vol1.7198
Pilvere I., Upīte I., Nipers A., Pilvere A. Productivity in bioeconomy industries in Latvia. 24thInternational Multidisciplinary Scientific Geoconference SGEM 2024, 2024:24:597–606. https://doi.org/10.5593/sgem2024/5.1/s21.74
FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in action. Rome: Food and Agriculture Organization of the United Nations, 2020. https://doi.org/10.4060/ca9229en
Allison E. H., Bassett H. R. Climate change in the oceans: Human impacts and responses. Science 2015:350:6262:778–782. https://doi.org/10.1126/science.aac8721
Kalnbaļķīte A., Poca P., Laktuka K., Lauka D., Blumberga D. The role of environmental communication in advancing sustainability in fisheries and aquaculture: a case study of Latvia. Sustainability 2023:15(23):16418. https://doi.org/10.3390/su152316418
De Silva S. S., Soto D. Climate change and aquaculture: Potential impacts, adaptation and mitigation. In Cochrane K., De Young C., Soto D., Bahri T. (Eds.). Climate change implications for fisheries and aquaculture: Overview of current scientific knowledge (pp. 151–212). FAO Fisheries and Aquaculture Technical Paper No. 530. Rome: FAO.