Have a personal or library account? Click to login
Toward an Integrated Approach – A Conceptual Framework for Complex Biomethane Development Cover

Toward an Integrated Approach – A Conceptual Framework for Complex Biomethane Development

Open Access
|Nov 2025

References

  1. European Environment Agency. Transport and mobility – European Environment Agency. EEA, Apr. 2023. [Online]. [Accessed 23.04.2025]. Available: https://www.eea.europa.eu/en/topics/in-depth/transport-and-mobility#:~:text=The%20European%20Green%20Deal%20aims,cars%2C%20planes%2C%20and%20ships
  2. Eurostat. Share of renewables in transport rose in 2023. European Commission, Feb. 7, 2025. [Online]. Available: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250207-1
  3. IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022.
  4. IEA. World Energy Outlook 2023. International Energy Agency, Paris, 2023.
  5. Scarlat N., Dallemand J. F., Fahl F. Biogas: Developments and perspectives in Europe. Renewable Energy 2018:129:457–472. https://doi.org/10.1016/j.renene.2018.03.006
  6. Torrijos M. State of development of biogas production in Europe. Procedia Environmental Sciences 2016:35:881–889. https://doi.org/10.1016/j.proenv.2016.07.043
  7. Holm-Nielsen J. B., Al Seadi T., Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource Technology 2009:100(22):5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046
  8. Dubrovskis V., Plume I. Biogas potential from damaged herbs. Engineering for Rural Development 2017:16:443–448. https://doi.org/10.22616/ERDev2017.16.N087
  9. Sulewski, P., Ignaciuk, W., Szymańska, M., & Wąs, A. (2023). Development of the Biomethane Market in Europe. Energies 2001:16(4). https://doi.org/10.3390/en16042001
  10. Baltic Energy Technology Perspectives. Pathways to a carbon-neutral Baltic energy sector. Nordic Energy Research, 2022.
  11. Blumberga D., Dzene I., Al Seadi T., Rutz D., Prassl H., Köttner M., Finsterwalder T. Biogas handbook. University of Southern Denmark, 2016.
  12. Muizniece I., Kubule A., Blumberga D. Bioeconomy development potential in Latvia based on organic waste quantities. Energy Procedia 2018:147:409–415. https://doi.org/10.1016/j.egypro.2018.07.052
  13. Bumbiere K., Gancone A., Pubule J., Kirsanovs V., Vasarevicius S., Blumberga D. Ranking of bioresources for biogas production. Environmental and Climate Technologies 2020:24(1):368–377. https://doi.org/10.2478/rtuect-2020-0021
  14. Pubule J., Blumberga A., Romagnoli F., Blumberga D. Finding an optimal solution for biowaste management in the Baltic States. Journal of Cleaner Production 2015:88:214–223. https://doi.org/10.1016/j.jclepro.2014.04.053
  15. Bumbiere K., Pubule J., Blumberga D. What Will Be the Future of Biogas Sector? Environmental and Climate Technologies 2021:25:295–305. https://doi.org/10.2478/rtuect-2021-0021
  16. Barisa A., Kirsanovs V., Safronova A. Future transport policy designs for biomethane promotion: A system Dynamics model. Journal of Environmental Management 2020:269:110842. https://doi.org/10.1016/j.jenvman.2020.110842
  17. Thornley P., Röder M., Whittaker C. Handling uncertainty in bioenergy resource assessment. Biomass Resource Assessment Handbook, 2015:65–86.
  18. Röder M. More than food or fuel. Stakeholder perceptions of anaerobic digestion and land use; a case study from the United Kingdom. Energy Policy 2016:97:73–81. https://doi.org/10.1016/j.enpol.2016.07.003
  19. Sovacool B. K., Griffiths S., Kim J., Bazilian M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews 2020:141:110759. https://doi.org/10.1016/j.rser.2021.110759
  20. Markard J., Raven R., Truffer B. Sustainability transitions: An emerging field of research and its prospects. Research Policy 2012:41(6):955–967. https://doi.org/10.1016/j.respol.2012.02.013
  21. Chodkowska-Miszczuk J., Kulla M., Novotný L. Biogas energy – Economic and environmental challenges and opportunities. Energies 2021:14(15):4700.
  22. Rutz D., Mergner R., Janssen R. Sustainable heat use of biogas plants. WIP Renewable Energies, Munich, Germany, 2015.
  23. Achinas S., Euverink G. J. W., Achinas V. A technological overview of biogas production from biowaste. Engineering 2017:3(3):299–307. https://doi.org/10.1016/J.ENG.2017.03.002
  24. Mauky E., Weinrich S., Nägele H. J., Jacobi H. F., Liebetrau J., Nelles M. Model predictive control for demand-driven biogas production in full-scale. Chemical Engineering & Technology 2017:40(4):773–782. https://doi.org/10.1002/ceat.201500412
  25. Lyng K. A., Stensgård A. E., Hanssen O. J., Modahl I. S. Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration. Journal of Cleaner Production 2018:182:737–745. https://doi.org/10.1016/j.jclepro.2018.02.126
  26. Boulamanti A. K., Maglio S. D., Giuntoli J., Agostini A. Influence of different practices on biogas sustainability. Biomass and Bioenergy 2013:53:149–161. https://doi.org/10.1016/j.biombioe.2013.02.020
  27. Smith B. M., Murphy J. D., O’Brien C. M. What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renewable and Sustainable Energy Reviews 2010:14(9):2696–2704.
  28. Patinvoh R. J., Osadolor O. A., Chandolias K., Sárvári Horváth I., Taherzadeh M. J. Innovative pretreatment strategies for biogas production. Bioresource Technology 2017:224:13–24. https://doi.org/10.1016/j.biortech.2016.11.083
  29. Petersson, A., & Wellinger, A. Biogas upgrading technologies – developments and innovations. IEA Bioenergy Task 37. 2009.
  30. Sun Q., Li H., Yan J., Liu L., Yu Z., Yu X. Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews 2015:51:521–532. https://doi.org/10.1016/j.rser.2015.06.029
  31. Budzianowski W. M., Budzianowska D. A. Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations. Energy 2015:88:658–666. https://doi.org/10.1016/j.energy.2015.05.104
  32. Lakemeyer E., Hesseler M., Schröder C. Barriers and facilitators for biomethane in Europe: A Delphi study. Energy Policy 2022:164:112901. https://doi.org/10.1016/j.enpol.2022.112901
  33. Nevzorova T., Kutcherov V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews 2019:26:100414. https://doi.org/10.1016/j.esr.2019.100414
  34. Thrän D., Billig E., Persson T., Svensson M., Daniel-Gromke J., Ponitka J., Seiffert M. Biomethane – status and factors affecting market development and trade. IEA Bioenergy Task 40. 2014.
  35. Thrän, D., Schaubach, K., Majer, S. et al. Governance of sustainability in the German biogas sector—adaptive management of the Renewable Energy Act between agriculture and the energy sector. Energy, Sustainability and Society 2020:10(3). https://doi.org/10.1186/s13705-019-0227-y
  36. Poeschl M., Ward S., Owende P. Environmental impacts of biogas deployment—Part I: Life cycle inventory for evaluation of production process emissions to air. Journal of Cleaner Production 2012:24:168–183. https://doi.org/10.1016/j.jclepro.2011.10.039
  37. Wieczorek A. J., Hekkert M. P. Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars. Science and Public Policy 2012:39(1):74–87. https://doi.org/10.1093/scipol/scr008
  38. Turnheim B., Berkhout F., Geels F., Hof A., McMeekin A., Nykvist B., Van Vuuren D. Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Global Environmental Change 2015:35:239–253. https://doi.org/10.1016/j.gloenvcha.2015.08.010
  39. Geels F. W., Sovacool B. K., Schwanen T., Sorrell S. Sociotechnical transitions for deep decarbonization. Science 2017:357(6357):1242–1244. https://doi.org/10.1126/science.aao3760
  40. European Commission. The European Green Deal. COM/2019/640 final. Brussels, 2021.
  41. Hijazi O., Munro S., Zerhusen B., Effenberger M. Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews 2016:54:1291–1300. https://doi.org/10.1016/j.rser.2015.10.013
  42. Huttunen, S., Manninen K., Leskinen P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. Journal of Cleaner Production 2014:80:5–16. https://doi.org/10.1016/j.rser.2009.04.003 https://doi.org/10.1016/j.jclepro.2014.05.081
  43. Capodaglio A. G., Callegari A., Lopez M. V. European framework for the diffusion of biogas uses: Emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability 2016:8(4):298. https://doi.org/10.3390/su8040298
  44. Sovacool B. K., Hess D. J. Ordering theories: Typologies and conceptual frameworks for sociotechnical change. Social Studies of Science 2017:47(5):703–750. https://doi.org/10.1177/0306312717709363
  45. Cherp A., Vinichenko V., Jewell J., Brutschin E., Sovacool B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Research & Social Science 2018:37:175–190. https://doi.org/10.1016/j.erss.2017.09.015
  46. Bauer F., Hulteberg C., Persson T., Tamm D. Biogas upgrading – Review of commercial technologies. Swedish Gas Technology Centre (SGC), 2017.
  47. Horschig T., Adams P. W. R., Röder M., Thornley P., Thrän D. Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Applied Energy 2019:233:502–513.
  48. Kougias P. G., Treu L., Benavente D. P., Boe K., Campanaro S., Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology 2017:225:429–437. https://doi.org/10.1016/j.biortech.2016.11.124
  49. International Organization for Standardization. ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework. Geneva, Switzerland, 2006.
  50. Sovacool B. K., Ratan P. S. Conceptualizing the acceptance of wind and solar electricity. Renewable and Sustainable Energy Reviews 2012:16(7):5268–5279. https://doi.org/10.1016/j.rser.2012.04.048
  51. Budzianowski M., Budzianowska D. A. Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations. Energy 2015:88:658–666. https://doi.org/10.1016/j.energy.2015.05.104
  52. Blumberga A., Blumberga D., Bažbauers G., Davidsen P., Moxnes E., Dzene I., Barisa A., Žogla G., Dāce E., Ozarska A. System Dynamics for Environmental Engineering Students, Riga Technical University, Riga, Latvia, 2011.
  53. Forrester J. W. Industrial Dynamics. MIT Press, 1961.
  54. Rozentāle L., Blumberga D. Methods to evaluate electricity policy from climate perspective. Environmental and Climate Technologies 2019:23(2):131–147. https://doi.org/10.2478/rtuect-2019-0060
DOI: https://doi.org/10.2478/rtuect-2025-0048 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 725 - 741
Submitted on: Apr 24, 2025
Accepted on: Oct 3, 2025
Published on: Nov 1, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ance Ansone, Liga Rozentale, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.