IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022.
Holm-Nielsen J. B., Al Seadi T., Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource Technology 2009:100(22):5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046
Sulewski, P., Ignaciuk, W., Szymańska, M., & Wąs, A. (2023). Development of the Biomethane Market in Europe. Energies 2001:16(4). https://doi.org/10.3390/en16042001
Muizniece I., Kubule A., Blumberga D. Bioeconomy development potential in Latvia based on organic waste quantities. Energy Procedia 2018:147:409–415. https://doi.org/10.1016/j.egypro.2018.07.052
Bumbiere K., Gancone A., Pubule J., Kirsanovs V., Vasarevicius S., Blumberga D. Ranking of bioresources for biogas production. Environmental and Climate Technologies 2020:24(1):368–377. https://doi.org/10.2478/rtuect-2020-0021
Pubule J., Blumberga A., Romagnoli F., Blumberga D. Finding an optimal solution for biowaste management in the Baltic States. Journal of Cleaner Production 2015:88:214–223. https://doi.org/10.1016/j.jclepro.2014.04.053
Bumbiere K., Pubule J., Blumberga D. What Will Be the Future of Biogas Sector? Environmental and Climate Technologies 2021:25:295–305. https://doi.org/10.2478/rtuect-2021-0021
Barisa A., Kirsanovs V., Safronova A. Future transport policy designs for biomethane promotion: A system Dynamics model. Journal of Environmental Management 2020:269:110842. https://doi.org/10.1016/j.jenvman.2020.110842
Röder M. More than food or fuel. Stakeholder perceptions of anaerobic digestion and land use; a case study from the United Kingdom. Energy Policy 2016:97:73–81. https://doi.org/10.1016/j.enpol.2016.07.003
Sovacool B. K., Griffiths S., Kim J., Bazilian M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews 2020:141:110759. https://doi.org/10.1016/j.rser.2021.110759
Markard J., Raven R., Truffer B. Sustainability transitions: An emerging field of research and its prospects. Research Policy 2012:41(6):955–967. https://doi.org/10.1016/j.respol.2012.02.013
Achinas S., Euverink G. J. W., Achinas V. A technological overview of biogas production from biowaste. Engineering 2017:3(3):299–307. https://doi.org/10.1016/J.ENG.2017.03.002
Mauky E., Weinrich S., Nägele H. J., Jacobi H. F., Liebetrau J., Nelles M. Model predictive control for demand-driven biogas production in full-scale. Chemical Engineering & Technology 2017:40(4):773–782. https://doi.org/10.1002/ceat.201500412
Lyng K. A., Stensgård A. E., Hanssen O. J., Modahl I. S. Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration. Journal of Cleaner Production 2018:182:737–745. https://doi.org/10.1016/j.jclepro.2018.02.126
Boulamanti A. K., Maglio S. D., Giuntoli J., Agostini A. Influence of different practices on biogas sustainability. Biomass and Bioenergy 2013:53:149–161. https://doi.org/10.1016/j.biombioe.2013.02.020
Smith B. M., Murphy J. D., O’Brien C. M. What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renewable and Sustainable Energy Reviews 2010:14(9):2696–2704.
Patinvoh R. J., Osadolor O. A., Chandolias K., Sárvári Horváth I., Taherzadeh M. J. Innovative pretreatment strategies for biogas production. Bioresource Technology 2017:224:13–24. https://doi.org/10.1016/j.biortech.2016.11.083
Sun Q., Li H., Yan J., Liu L., Yu Z., Yu X. Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews 2015:51:521–532. https://doi.org/10.1016/j.rser.2015.06.029
Budzianowski W. M., Budzianowska D. A. Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations. Energy 2015:88:658–666. https://doi.org/10.1016/j.energy.2015.05.104
Lakemeyer E., Hesseler M., Schröder C. Barriers and facilitators for biomethane in Europe: A Delphi study. Energy Policy 2022:164:112901. https://doi.org/10.1016/j.enpol.2022.112901
Nevzorova T., Kutcherov V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews 2019:26:100414. https://doi.org/10.1016/j.esr.2019.100414
Thrän D., Billig E., Persson T., Svensson M., Daniel-Gromke J., Ponitka J., Seiffert M. Biomethane – status and factors affecting market development and trade. IEA Bioenergy Task 40. 2014.
Thrän, D., Schaubach, K., Majer, S. et al. Governance of sustainability in the German biogas sector—adaptive management of the Renewable Energy Act between agriculture and the energy sector. Energy, Sustainability and Society 2020:10(3). https://doi.org/10.1186/s13705-019-0227-y
Poeschl M., Ward S., Owende P. Environmental impacts of biogas deployment—Part I: Life cycle inventory for evaluation of production process emissions to air. Journal of Cleaner Production 2012:24:168–183. https://doi.org/10.1016/j.jclepro.2011.10.039
Wieczorek A. J., Hekkert M. P. Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars. Science and Public Policy 2012:39(1):74–87. https://doi.org/10.1093/scipol/scr008
Geels F. W., Sovacool B. K., Schwanen T., Sorrell S. Sociotechnical transitions for deep decarbonization. Science 2017:357(6357):1242–1244. https://doi.org/10.1126/science.aao3760
Hijazi O., Munro S., Zerhusen B., Effenberger M. Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews 2016:54:1291–1300. https://doi.org/10.1016/j.rser.2015.10.013
Capodaglio A. G., Callegari A., Lopez M. V. European framework for the diffusion of biogas uses: Emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability 2016:8(4):298. https://doi.org/10.3390/su8040298
Sovacool B. K., Hess D. J. Ordering theories: Typologies and conceptual frameworks for sociotechnical change. Social Studies of Science 2017:47(5):703–750. https://doi.org/10.1177/0306312717709363
Cherp A., Vinichenko V., Jewell J., Brutschin E., Sovacool B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Research & Social Science 2018:37:175–190. https://doi.org/10.1016/j.erss.2017.09.015
Horschig T., Adams P. W. R., Röder M., Thornley P., Thrän D. Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Applied Energy 2019:233:502–513.
Kougias P. G., Treu L., Benavente D. P., Boe K., Campanaro S., Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology 2017:225:429–437. https://doi.org/10.1016/j.biortech.2016.11.124
International Organization for Standardization. ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework. Geneva, Switzerland, 2006.
Sovacool B. K., Ratan P. S. Conceptualizing the acceptance of wind and solar electricity. Renewable and Sustainable Energy Reviews 2012:16(7):5268–5279. https://doi.org/10.1016/j.rser.2012.04.048
Budzianowski M., Budzianowska D. A. Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations. Energy 2015:88:658–666. https://doi.org/10.1016/j.energy.2015.05.104
Blumberga A., Blumberga D., Bažbauers G., Davidsen P., Moxnes E., Dzene I., Barisa A., Žogla G., Dāce E., Ozarska A. System Dynamics for Environmental Engineering Students, Riga Technical University, Riga, Latvia, 2011.
Rozentāle L., Blumberga D. Methods to evaluate electricity policy from climate perspective. Environmental and Climate Technologies 2019:23(2):131–147. https://doi.org/10.2478/rtuect-2019-0060