United Nations Environment Programme. Global Peatlands Assessment: The State of the World’s Peatlands – Evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands. United Nations Environment Programme, 2022. https://doi.org/10.59117/20.500.11822/41222
Apori S. O., Mcmillan D., Giltrap M., Tian F. Mapping the restoration of degraded peatland as a research area: A scientometric review. Frontiers in Environmental Science 2022:10. https://doi.org/10.3389/fenvs.2022.942788
Dommain R., Frolking S., Jeltsch-Thömmes A., Joos F., Couwenberg J., Glaser P. H. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Global Change Biology 2018:24(11):5518–5533. https://doi.org/10.1111/gcb.14400
O’Driscoll C. et al. National scale assessment of total trihalomethanes in Irish drinking water. Journal of Environmental Management 2018:212:131–141. https://doi.org/10.1016/j.jenvman.2018.01.070
Young D. M., Baird A. J., Morris P. J., Holden J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resources Research 2017:53(8):6510–6522. https://doi.org/10.1002/2016WR019898
Gancone A., Viznere R., Kaleja D., Pubule J., Blumberga D. Towards Climate Neutrality via Sustainable Agriculture in Soil Management. Environmental and Climate Technologies 2022:26(1):535–547. https://doi.org/10.2478/rtuect-2022-0041
Sabūnas A. Lithuania’s, Latvia’s and Japan’s Climate Policies. Are we Far from the Ideals of the Paris Agreement? Environmental and Climate Technologies 2024:28(1):760–775. https://doi.org/10.2478/rtuect-2024-0059
Barbier E. B., Burgess J. C. Economics of Peatlands Conservation, Restoration and Sustainable Management. SSRN Electron. J. 2024. https://doi.org/10.2139/ssrn.4695533
Par Kūdras ilgtspējīgas izmantošanas pamatnostādnēm 2020.–2030. gadam. (On the Guidelines for the Sustainable Use of Peat for 2020–2030). [Online]. [Accessed 11.03.2025]. Available: https://likumi.lv/doc.php?id=319013 (In Latvian).
Eiropas Savienības kohēzijas politikas programmas 2021.–2027. gadam 6.1.1. specifiskā atbalsta mērķa ‘Pārejas uz klimatneitralitāti radīto ekonomisko, sociālo un vides seku mazināšana visvairāk skartajos reģionos’ 6.1.1.1. pasākuma ‘Atteikšanās no kūdras izmantošanas enerģētikā’ pirmās projektu iesniegumu atlases kārtas īstenošanas noteikumi (Implementation rules for the first round of project application selection for measure 6.1.1.1. ‘Abandonment of peat use in energy’ under specific objective 6.1.1. ‘Mitigate the economic, social and environmental consequences of the transition to climate neutrality in the regions most affected’ of the European Union Cohesion Policy Programme 2021–2027). [Online]. [Accessed 11.03.2025]. Available: https://likumi.lv/doc.php?id=353524 (In Latvian).
Par taisnīgas pārkārtošanās teritoriālo plānu (On the territorial just transition plan). [Online]. [Accessed 11.03.2025]. Available: https://likumi.lv/doc.php?id=334018 (In Latvian).
Latvijas Lauku konsultāciju un izglītības centrs (Latvian Rural Consulting and Education Center). [Online]. [Accessed 14.03.2025]. Available: https://new.llkc.lv/ (In Latvian).
Krīgere I., Kalniņa L. Types of recultivation suitable for Latvian conditions. In Priede A., Gancone A. (eds.) Sustainable and Responsible after-use of peat extraction areas. Rīga: Baltijas krasti, 2019.
Peat4Res. Project: Sustainable strategies for the restoration of peat extraction sites. Riga Technical University, Institute of Energy Systems and Environment. [Online]. [Accessed 17.03.2025]. Available: https://videszinatne.rtu.lv/zinatne/projekti-un-petijumi/peat4res/ (In Latvian).
Schreiber A., Marx J., Zapp P. Comparative life cycle assessment of electricity generation by different wind turbine types. Journal of Cleaner Production 2019:233:561–572. https://doi.org/10.1016/j.jclepro.2019.06.058
Ferrara C., Marmiroli B., Carvalho M. L., Girardi P. Life Cycle Assessment of Photovoltaic electricity production in Italy: Current scenario and future developments. Science of the Total Environment 2024:948:174846. https://doi.org/10.1016/j.scitotenv.2024.174846
De Vita A. et al., Eds., EU reference scenario 2016. Energy, transport and GHG emissions: trends to 2050. Luxembourg: Publications Office of the EU, 2016. https://doi.org/10.2833/9127.
Bruijn H. et al. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. In Eco-Efficiency in Industry and Science, no. 7. Dordrecht: Kluwer Academic Publishers, 2004. https://doi.org/10.1007/0-306-48055-7
Intergovernmental Panel on Climate Change (IPCC), Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press, 2023. https://doi.org/10.1017/9781009157896
Archibald A. T., Folberth G., Wade D. C., Scott D. A world avoided: impacts of changes in anthropogenic emissions on the burden and effects of air pollutants in Europe and North America. Faraday Discuss 2017:200:475–500. https://doi.org/10.1039/C7FD00004A