Have a personal or library account? Click to login
Thermal Performance Analysis of Phase Change Material Based Thermal Energy Storage Cover

Thermal Performance Analysis of Phase Change Material Based Thermal Energy Storage

Open Access
|Sep 2025

References

  1. Rendall J., Elatar A., Nawaz K., Sun J. Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage. <em>Renewable and Sustainable Energy Reviews</em> 2023:185:113656. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.RSER.2023.113656" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.RSER.2023.113656</a>">https://doi.org/10.1016/J.RSER.2023.113656</ext-link>
  2. Olympios A. V., Sapin P., Freeman J., Olkis C., Markides C. N. Operational optimisation of an air-source heat pump system with thermal energy storage for domestic applications. <em>Energy Conversion and Management</em> 2022:273:116426. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.ENCONMAN.2022.116426" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.ENCONMAN.2022.116426</a>">https://doi.org/10.1016/J.ENCONMAN.2022.116426</ext-link>
  3. Douvi E., Pagkalos C., Dogkas G., Koukou M. K., Stathopoulos V. N., Caouris Y., Vrachopoulos M. G. Phase change materials in solar domestic hot water systems: A review. <em>International Journal of Thermofluids</em> 2021:10:100075. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.IJFT.2021.100075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.IJFT.2021.100075</a>">https://doi.org/10.1016/J.IJFT.2021.100075</ext-link>
  4. Javadi F. S., Metselaar H. S. C., Ganesan P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. <em>Solar Energy</em> 2020:206:330–352. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.SOLENER.2020.05.106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.SOLENER.2020.05.106</a>">https://doi.org/10.1016/J.SOLENER.2020.05.106</ext-link>
  5. Dzikevics M., Veidenbergs I., Valančius K. Sensitivity Analysis of Packed Bed Phase Change Material Thermal Storage for Domestic Solar Thermal System. <em>Environmental and Climate Technologies</em> 2020:24(1):378–391. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2020-0022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-0022</a>">https://doi.org/10.2478/rtuect-2020-0022</ext-link>
  6. Szajding A., Kuta M., Cebo-Rudnicka A., Rywotycki M. Analysis of work of a thermal energy storage with a phase change material (PCM) charged with electric heaters from a photovoltaic installation. <em>International Communications in Heat and Mass Transfer</em> 2023:140:106547. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106547" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106547</a>">https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106547</ext-link>
  7. Royo P., Johnson M., David N., Fiss M., López-Sabirón A. M., Ferreira G. A., Gutierrez A. Experimental analysis of a power-to-heat storage with high-temperature phase change materials to increase flexibility and sector coupling. <em>Applied Thermal Engineering</em> 2024:236:121889. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.APPLTHERMALENG.2023.121889" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.APPLTHERMALENG.2023.121889</a>">https://doi.org/10.1016/J.APPLTHERMALENG.2023.121889</ext-link>
  8. Resch A., Dehner H. Economic Analysis of Mobile Thermal Energy Storages as Complement to District Heating. <em>Environmental and Climate Technologies</em> 2023:27(1):516–531. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0038</a>">https://doi.org/10.2478/rtuect-2023-0038</ext-link>
  9. Narbuts J., Vanaga R. Revolutionizing the Building Envelope: A Comprehensive Scientific Review of Innovative Technologies for Reduced Emissions. <em>Environmental and Climate Technologies</em> 2023:27(1):724–737. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0053</a>">https://doi.org/10.2478/rtuect-2023-0053</ext-link>
  10. Narbuts J., Vanaga R. Nano-Enhanced Phase Change Materials for Building Envelopes: A Systematic Review of Thermal Performance and Applications. <em>Environmental and Climate Technologies</em> 2025:29(1):359–389. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2025-0025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2025-0025</a>">https://doi.org/10.2478/rtuect-2025-0025</ext-link>
  11. NematpourKeshteli A., Mahmoudi A., Iasiello M., Langella G., Bianco N. Experimental and numerical assessment of thermal characteristics of PCM in a U-shaped heat exchanger using porous metal foam and NanoPowder. <em>Solar Energy Materials and Solar Cells</em> 2024:274:112970. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.SOLMAT.2024.112970" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.SOLMAT.2024.112970</a>">https://doi.org/10.1016/J.SOLMAT.2024.112970</ext-link>
  12. Kalapala L., Devanuri J. K. Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage – A review. <em>Journal of Energy Storage</em> 2018:20:497–519. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EST.2018.10.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EST.2018.10.024</a>">https://doi.org/10.1016/J.EST.2018.10.024</ext-link>
  13. Choure B. K., Alam T., Kumar R. A review on heat transfer enhancement techniques for PCM based thermal energy storage system. <em>Journal of Energy Storage</em> 2023:72(A):108161. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EST.2023.108161" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EST.2023.108161</a>">https://doi.org/10.1016/J.EST.2023.108161</ext-link>
  14. Abdellatif H. E., Belaadi A., Arshad A., Chai B. X., Ghernaout D. Enhancing thermal energy storage system efficiency: Geometric analysis of phase change material integrated wedge-shaped heat exchangers. <em>Applied Thermal Engineering</em> 2025:262:125268. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.APPLTHERMALENG.2024.125268" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.APPLTHERMALENG.2024.125268</a>">https://doi.org/10.1016/J.APPLTHERMALENG.2024.125268</ext-link>
  15. Fadl M., Mahon D., Eames P. C. Thermal performance analysis of compact thermal energy storage unit-An experimental study. <em>International Journal of Heat and Mass Transfer</em> 2021:173:121262. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121262" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121262</a>">https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121262</ext-link>
  16. Muraleedharan Nair A., Wilson C., Kamkari B., Locke J., Jun Huang M., Griffiths P., Hewitt N. J. Advancing Thermal Performance in PCM-Based Energy Storage: A Comparative Study with Fins, Expanded Graphite, and Combined Configurations. <em>Energy Conversion and Management: X</em> 2024:23:100627. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.ECMX.2024.100627" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.ECMX.2024.100627</a>">https://doi.org/10.1016/J.ECMX.2024.100627</ext-link>
  17. Thonon M., Fraisse G., Zalewski L., Pailha M. Simultaneous charging and discharging processes in latent heat thermal energy storage: A review. <em>Thermal Science and Engineering Progress</em> 2024:47:102299. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.TSEP.2023.102299" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.TSEP.2023.102299</a>">https://doi.org/10.1016/J.TSEP.2023.102299</ext-link>
  18. Herbinger F., Groulx D. Experimental comparative analysis of finned-tube PCM-heat exchangers’ performance. <em>Applied Thermal Engineering</em> 2022:211:118532. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.APPLTHERMALENG.2022.118532" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.APPLTHERMALENG.2022.118532</a>">https://doi.org/10.1016/J.APPLTHERMALENG.2022.118532</ext-link>
  19. Pakalka S., Valančius K., Streckienė G. Experimental comparison of the operation of PCM-based copper heat exchangers with different configurations. <em>Applied Thermal Engineering</em> 2020:172:115138. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.APPLTHERMALENG.2020.115138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.APPLTHERMALENG.2020.115138</a>">https://doi.org/10.1016/J.APPLTHERMALENG.2020.115138</ext-link>
  20. Pakalka S., Donėlienė J., Rudzikas M., Valančius K., Streckienė G. Development and experimental investigation of full-scale phase change material thermal energy storage prototype for domestic hot water applications. <em>Journal of Energy Storage</em> 2024:80:110283. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.est.2023.110283" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.est.2023.110283</a>">https://doi.org/10.1016/j.est.2023.110283</ext-link>
  21. European Commission. EU regulation no 814/2013 implementing directive 2009/125/EC of the European Parliament and of the council with regard to ecodesign requirements for water heaters and hot water storage tanks. <em>Official Journal of European Union</em> 2013: L 346. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://data.europa.eu/eli/reg/2013/814/2017-01-09">http://data.europa.eu/eli/reg/2013/814/2017-01-09</ext-link>
  22. ISO 12241:2022. Thermal insulation for building equipment and industrial installations – Calculation rules. [Online]. [Accessed 10.06.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.iso.org/standard/74655.html">https://www.iso.org/standard/74655.html</ext-link>
DOI: https://doi.org/10.2478/rtuect-2025-0038 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 552 - 561
Submitted on: Mar 19, 2025
Accepted on: Aug 26, 2025
Published on: Sep 16, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Saulius Pakalka, Jolanta Donėlienė, Tomas Razvanovičius, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.