Have a personal or library account? Click to login
Data Challenges in AI-Driven HVAC Systems: A Critical Analysis and Future Directions Cover

Data Challenges in AI-Driven HVAC Systems: A Critical Analysis and Future Directions

Open Access
|Sep 2025

References

  1. Zhou S. L., Shah A. A., Leung P. K., Zhu X., Liao Q. A comprehensive review of the applications of machine learning for HVAC. <em>DeCarbon</em> 2023:2:100023. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.decarb.2023.100023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.decarb.2023.100023</a>">https://doi.org/10.1016/j.decarb.2023.100023</ext-link>
  2. Ali D. M. T. E., Motuzienė V., Džiugaitė-Tumėnienė R. AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings. <em>Energies</em> 2014:17(17):4277. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en17174277" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en17174277</a>">https://doi.org/10.3390/en17174277</ext-link>
  3. Motuzienė V., Bielskus J., Lapinskienė V., Rynkun G. Office building’s occupancy prediction using extreme learning machine model with different optimization algorithms. <em>Environmental and Climate Technologies</em> 2021:25(1):525–536. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2021-0038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2021-0038</a>">https://doi.org/10.2478/rtuect-2021-0038</ext-link>
  4. Shahrabani M. M. N., Apanaviciene R. An AI-Based Evaluation Framework for Smart Building Integration into Smart City. <em>Sustainability (Switzerland)</em> 2024:16(18):8032. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su16188032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su16188032</a>">https://doi.org/10.3390/su16188032</ext-link>
  5. Moayedi H., Mosavi A. Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings. <em>Energies (Basel)</em> 2021:14(6):1649. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14061649" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14061649</a>">https://doi.org/10.3390/en14061649</ext-link>
  6. Albatayneh A. The Share of Energy Consumption by End Use in Electrical Residential Buildings in Jordan. <em>Environmental and Climate Technologies</em> 2022:26(1):754–766. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2022-0058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2022-0058</a>">https://doi.org/10.2478/rtuect-2022-0058</ext-link>
  7. Tejani A. AI-Driven Predictive Maintenance in HVAC Systems: Strategies for Improving Efficiency and Reducing System Downtime. <em>International Journal of Advancements in Science &amp; Technology</em> 2024:2:6–19.
  8. Zhou X. L., Du H., Xue S., Ma Z. J. Recent advances in data mining and machine learning for enhanced building energy management. <em>Energy</em> 2024:307:132636. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2024.132636" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2024.132636</a>">https://doi.org/10.1016/j.energy.2024.132636</ext-link>
  9. Xiao Z. W. <em>et al.</em> Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning. <em>Energy and Buildings</em> 2022:258:111832. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2022.111832" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2022.111832</a>">https://doi.org/10.1016/j.enbuild.2022.111832</ext-link>
  10. Huang J. J. <em>et al.</em> Real vs. simulated: Questions on the capability of simulated datasets on building fault detection for energy efficiency from a data-driven perspective. <em>Energy and Buildings</em> 2022:259:111872. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2022.111872" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2022.111872</a>">https://doi.org/10.1016/j.enbuild.2022.111872</ext-link>
  11. Albatayneh A. The Share of Energy Consumption by End Use in Electrical Residential Buildings in Jordan. <em>Environmental and Climate Technologies</em> 2022:26(1):754–766. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2022-0058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2022-0058</a>">https://doi.org/10.2478/rtuect-2022-0058</ext-link>
  12. Mukhtar A., Hadwiger M., Wotawa F., Schweiger G. Reproducibility of Machine Learning-Based Fault Detection and Diagnosis for HVAC Systems in Buildings: An Empirical Study. Jul. 2025, [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://arxiv.org/abs/2508.00880">http://arxiv.org/abs/2508.00880</ext-link>
  13. Moher D. <em>et al.</em> Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Jul. 01, 2009, Public Library of Science. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pmed.1000097" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pmed.1000097</a>">https://doi.org/10.1371/journal.pmed.1000097</ext-link>
  14. Himeur Y., Ghanem K., Alsalemi A., Bensaali F., Amira A. Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives. <em>Applied Energy</em> 2021:287:116601. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2021.116601" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2021.116601</a>">https://doi.org/10.1016/j.apenergy.2021.116601</ext-link>
  15. Ogundiran J., Asadi E., Gameiro da Silva M. A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings. <em>Sustainability</em> 2024:16(9)3627. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su16093627" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su16093627</a>">https://doi.org/10.3390/su16093627</ext-link>
  16. Khan W., Liao J. Y., Walker S., Zeiler W. Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism. <em>Applied Energy</em> 2022:319:119281. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2022.119281" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2022.119281</a>">https://doi.org/10.1016/j.apenergy.2022.119281</ext-link>
  17. Taheri S., Ahmadi A., Mohammadi-Ivatloo B., Asadi S. Fault detection diagnostic for HVAC systems via deep learning algorithms. <em>Energy and Buildings</em> 2021:250:111275. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2021.111275" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2021.111275</a>">https://doi.org/10.1016/j.enbuild.2021.111275</ext-link>
  18. Chen Z., Xiao F., Guo F. Similarity learning-based fault detection and diagnosis in building HVAC systems with limited labeled data <em>Renewable and Sustainable Energy Reviews</em> 2023:185:113612. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2023.113612" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2023.113612</a>">https://doi.org/10.1016/j.rser.2023.113612</ext-link>
  19. Lei L., Shao S. L. Prediction model of the large commercial building cooling loads based on rough set and deep extreme learning machine. <em>Journal of Building Engineering</em> 2023:80:107958. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jobe.2023.107958" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jobe.2023.107958</a>">https://doi.org/10.1016/j.jobe.2023.107958</ext-link>
  20. Seo B., Yoon Y., Lee K. H., Cho S. Comparative Analysis of ANN and LSTM Prediction Accuracy and Cooling Energy Savings through AHU-DAT Control in an Office Building. <em>Buildings</em> 2023:13(6):1434. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/buildings13061434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/buildings13061434</a>">https://doi.org/10.3390/buildings13061434</ext-link>
  21. Nelson W., Culp C. FDD in Building Systems Based on Generalized Machine Learning Approaches. <em>Energies (Basel)</em> 2023:16(4):1637. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16041637" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16041637</a>">https://doi.org/10.3390/en16041637</ext-link>
  22. Lavanya R., Murukesh C., Shanker N. R. Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller. <em>Energy</em> 2023:278(A):127828. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2023.127828" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2023.127828</a>">https://doi.org/10.1016/j.energy.2023.127828</ext-link>
  23. Tenopir C. <em>et al.</em> Data sharing by scientists: Practices and perceptions. <em>PLoS One</em> 2011:6(6). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0021101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0021101</a>">https://doi.org/10.1371/journal.pone.0021101</ext-link>
  24. Bakar A. A., Yussof S., Ghapar A. A., Sameon S. S., Jørgensen B. N. A Review of Privacy Concerns in Energy- Efficient Smart Buildings: Risks, Rights, and Regulations. <em>Energies (Basel)</em> 2024:17(5):977. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en17050977" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en17050977</a>">https://doi.org/10.3390/en17050977</ext-link>
  25. UNESCO. UNESCO Recommendation on Open Science. [Online]. [Accessed 17.03.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.unesco.org/en/open-science/about">https://www.unesco.org/en/open-science/about</ext-link>
  26. Kaggle. [Online]. [Accessed 18.03.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.kaggle.com/">https://www.kaggle.com/</ext-link>
  27. ASHRAE. [Online]. [Accessed 18.03.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ashrae.org/">https://www.ashrae.org/</ext-link>
  28. U.S. Department of Energy. [Online]. [Accessed 18.03.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.osti.gov/">https://www.osti.gov/</ext-link>
  29. Lavanya R., Murukesh C., Shanker N. R. Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller. <em>Energy</em> 2023:278(A):127828. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2023.127828" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2023.127828</a>">https://doi.org/10.1016/j.energy.2023.127828</ext-link>
  30. Gharsellaoui S., Mansouri M., Refaat S. S., Abu-Rub H., Messaoud H. Multivariate features extraction and effective decision making using machine learning approaches. <em>Energies (Basel)</em> 2020:13(3):609. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en13030609" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en13030609</a>">https://doi.org/10.3390/en13030609</ext-link>
  31. Duan K., Suen C. W. K., Zou Z. Robot morphology evolution for automated HVAC system inspections using graph heuristic search and reinforcement learning. <em>Automation in Construction</em> 2023:153:104956. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.autcon.2023.104956" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.autcon.2023.104956</a>">https://doi.org/10.1016/j.autcon.2023.104956</ext-link>
  32. Chen E. X., Han X., Malkawi A., Zhang R. Y., Li N. Adaptive model predictive control with ensembled multi-time scale deep-learning models for smart control of natural ventilation. <em>Building and Environment</em> 2023:242:110519. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.buildenv.2023.110519" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.buildenv.2023.110519</a>">https://doi.org/10.1016/j.buildenv.2023.110519</ext-link>
  33. Yu L., Xu Z., Zhang T., Guan X., Yue D. Energy-efficient personalized thermal comfort control in office buildings based on multi-agent deep reinforcement learning. <em>Building and Environment</em> 2022:223:109458. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.buildenv.2022.109458" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.buildenv.2022.109458</a>">https://doi.org/10.1016/j.buildenv.2022.109458</ext-link>
  34. Sarkar S. <em>et al.</em> Sustainability of Data Center Digital Twins with Reinforcement Learning. <em>Proceedings of the AAAI Conference on Artificial Intelligence</em> 2024:23832–23834. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1609/aaai.v38i21.30580" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1609/aaai.v38i21.30580</a>">https://doi.org/10.1609/aaai.v38i21.30580</ext-link>
  35. Bouabdallaoui Y., Lafhaj Z., Yim P., Ducoulombier L., Bennadji B. Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. <em>Sensors</em> 2021:21(4):1044. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/s21041044" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/s21041044</a>">https://doi.org/10.3390/s21041044</ext-link>.
  36. Taheri S., Ahmadi A., Mohammadi-Ivatloo B., Asadi S. Fault detection diagnostic for HVAC systems via deep learning algorithms. <em>Energy and Buildings</em> 2021:250:111275. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2021.111275" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2021.111275</a>">https://doi.org/10.1016/j.enbuild.2021.111275</ext-link>.
  37. Moayedi H., Mosavi A. Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings. <em>Energies (Basel)</em> 2021:14(5):1331. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14051331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14051331</a>">https://doi.org/10.3390/en14051331</ext-link>
  38. Metsä-Eerola I., Pulkkinen J., Niemitalo O., Koskela O. On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks. <em>Energies (Basel)</em> 2022:15(14):5084. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en15145084" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en15145084</a>">https://doi.org/10.3390/en15145084</ext-link>
  39. Rehman S. U., Javed A. R., Khan M. U., Awan M. N., Farukh A., Hussien A. PersonalisedComfort: a personalised thermal comfort model to predict thermal sensation votes for smart building residents. <em>Enterprise Information Systems</em> 2022:16(7):1852316. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17517575.2020.1852316" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17517575.2020.1852316</a>">https://doi.org/10.1080/17517575.2020.1852316</ext-link>.
  40. Yan K., Zhou X. K. Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN. <em>Digital Communications and Networks</em> 2022:8(4):531–539. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.dcan.2022.03.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.dcan.2022.03.023</a>">https://doi.org/10.1016/j.dcan.2022.03.023</ext-link>.
  41. Chen Z., Xiao F., Guo F. Similarity learning-based fault detection and diagnosis in building HVAC systems with limited labeled data. <em>Renewable and Sustainable Energy Reviews</em> 2023:185:113612. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2023.113612" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2023.113612</a>">https://doi.org/10.1016/j.rser.2023.113612</ext-link>
  42. Ma H., Xu L., Javaheri Z., Moghadamnejad N., Abedi M. Reducing the consumption of household systems using hybrid deep learning techniques. <em>Sustainable Computing: Informatics and Systems</em> 2023:38:100874. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.suscom.2023.100874" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.suscom.2023.100874</a>">https://doi.org/10.1016/j.suscom.2023.100874</ext-link>
  43. Segala G., Doriguzzi-Corin R., Peroni C., Gerola M., Siracusa D. EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation. <em>Energies (Basel)</em> 2023:16(21):7334. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16217334" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16217334</a>">https://doi.org/10.3390/en16217334</ext-link>
  44. Borda D., Bergagio M., Amerio M., Masoero M. C., Borchiellini R., Papurello D. Development of Anomaly Detectors for HVAC Systems Using Machine Learning. <em>Processes</em> 2023:11(2):535. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/pr11020535" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pr11020535</a>">https://doi.org/10.3390/pr11020535</ext-link>
  45. Shen C., Zhang H., Meng S., Li C. Augmented data driven self-attention deep learning method for imbalanced fault diagnosis of the HVAC chiller. <em>Engineering Applications of Artificial Intelligence</em> 2023:117(A):105540. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.engappai.2022.105540" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.engappai.2022.105540</a>">https://doi.org/10.1016/j.engappai.2022.105540</ext-link>
  46. Nelson W., Culp C. FDD in Building Systems Based on Generalized Machine Learning Approaches. <em>Energies (Basel)</em> 2023:16(4):1637. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16041637" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16041637</a>">https://doi.org/10.3390/en16041637</ext-link>
  47. Tian R. Q., Gomez-Rosero S., Capretz M. A. M. Health Prognostics Classification with Autoencoders for Predictive Maintenance of HVAC Systems. <em>Energies (Basel)</em> 2023:16(20):7094. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16207094" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16207094</a>">https://doi.org/10.3390/en16207094</ext-link>
  48. Seo B., Yoon Y., Lee K. H., Cho S. Comparative Analysis of ANN and LSTM Prediction Accuracy and Cooling Energy Savings through AHU-DAT Control in an Office Building. <em>Buildings</em> 2023:13(6):1434. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/buildings13061434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/buildings13061434</a>">https://doi.org/10.3390/buildings13061434</ext-link>.
  49. Lei L., Shao S. L. Prediction model of the large commercial building cooling loads based on rough set and deep extreme learning machine. <em>Journal of Building Engineering</em> 2023:80:107958. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jobe.2023.107958" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jobe.2023.107958</a>">https://doi.org/10.1016/j.jobe.2023.107958</ext-link>
  50. Siddique M. T., Koukaras P., Ioannidis D., Tjortjis C. SmartBuild RecSys: A Recommendation System Based on the Smart Readiness Indicator for Energy Efficiency in Buildings. <em>Algorithms</em> 2023:16(10):482. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/a16100482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/a16100482</a>">https://doi.org/10.3390/a16100482</ext-link>
  51. Chen S. H. <em>et al.</em> A novel machine learning-based model predictive control framework for improving the energy efficiency of air-conditioning systems. <em>Energy and Buildings</em> 2023:294:113258. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2023.113258" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2023.113258</a>">https://doi.org/10.1016/j.enbuild.2023.113258</ext-link>
  52. Ntafalias A. <em>et al.</em> Smart buildings with legacy equipment: A case study on energy savings and cost reduction through an IoT platform in Ireland and Greece. <em>Results in Engineering</em> 2024:22:102095. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rineng.2024.102095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rineng.2024.102095</a>">https://doi.org/10.1016/j.rineng.2024.102095</ext-link>
  53. Okazawa K. <em>et al.</em> Evaluation of Deep Learning-Based Non-Intrusive Thermal Load Monitoring. <em>Energies (Basel)</em> 2024:17(9):2012. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en17092012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en17092012</a>">https://doi.org/10.3390/en17092012</ext-link>
  54. Yan K., Lu C., Ma X., Ji Z., Huang J. Intelligent fault diagnosis for air handing units based on improved generative adversarial network and deep reinforcement learning. <em>Expert Systems with Applications</em> 2024:240:122545. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2023.122545" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2023.122545</a>">https://doi.org/10.1016/j.eswa.2023.122545</ext-link>
  55. Sulaiman M. H., Mustaffa Z. Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach. <em>Energy</em> 2024:297:131159. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2024.131159" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2024.131159</a>">https://doi.org/10.1016/j.energy.2024.131159</ext-link>
  56. Huang Y., Coursey A., Quinones-Grueiro M., Biswas G. Time-Series Few Shot Anomaly Detection for HVAC Systems. <em>IFAC-PapersOnLine</em> 2024:58(4):426–431. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ifacol.2024.07.255" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ifacol.2024.07.255</a>">https://doi.org/10.1016/j.ifacol.2024.07.255</ext-link>
  57. Soleimani M., Irani F. N., Yadegar M., Davoodi M. Multi-objective optimization of building HVAC operation: Advanced strategy using Koopman predictive control and deep learning. <em>Building and Environment</em> 2024:248:111073. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.buildenv.2023.111073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.buildenv.2023.111073</a>">https://doi.org/10.1016/j.buildenv.2023.111073</ext-link>
  58. Mohamed A. G., Ghaly J. E., Marzouk M. Revolutionizing semantic integration of maintenance cost prediction for building systems using artificial neural networks. <em>Journal of Building Engineering</em> 2024:96:110416. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jobe.2024.110416" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jobe.2024.110416</a>">https://doi.org/10.1016/j.jobe.2024.110416</ext-link>
  59. Bian J., Wang J., Yece Q. A novel study on power consumption of an HVAC system using CatBoost and AdaBoost algorithms combined with the metaheuristic algorithms. <em>Energy</em> 2024:302:131841. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2024.131841" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2024.131841</a>">https://doi.org/10.1016/j.energy.2024.131841</ext-link>
  60. Bucarelli N., El-Gohary N. Sensor deployment configurations for building energy consumption prediction. <em>Energy and Buildings</em> 2024:308:113888. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2024.113888" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2024.113888</a>">https://doi.org/10.1016/j.enbuild.2024.113888</ext-link>
  61. Safari A., Kharrati H., Rahimi A. A hybrid attention-based long short-term memory fast model for thermal regulation of smart residential buildings. <em>IET Smart Cities</em> 2024:6(4):361–371. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/smc2.12088" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/smc2.12088</a>">https://doi.org/10.1049/smc2.12088</ext-link>
  62. Wei Z., Calautit J. K., Wei S., Tien P. W. Real-time clothing insulation level classification based on model transfer learning and computer vision for PMV-based heating system optimization through piecewise linearization. <em>Building and Environment</em> 2024:253:111277. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.buildenv.2024.111277" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.buildenv.2024.111277</a>">https://doi.org/10.1016/j.buildenv.2024.111277</ext-link>
  63. Moayedi H., Mosavi A. Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings. <em>Energies (Basel)</em> 2021:14(6):1649. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14061649" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14061649</a>">https://doi.org/10.3390/en14061649</ext-link>
  64. Jacoby M. <em>et al.</em> WHISPER: Wireless Home Identification and Sensing Platform for Energy Reduction. <em>Journal of Sensor and Actuator Networks</em> 2021:10(4):71. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/jsan10040071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jsan10040071</a>">https://doi.org/10.3390/jsan10040071</ext-link>
  65. HARMONAC. [Online]. [Accessed 18.03.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.harmonac.info/">http://www.harmonac.info/</ext-link>
  66. Moayedi H., Mosavi A. Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings. <em>Energies (Basel)</em> 2021:14(5):1331. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14051331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14051331</a>">https://doi.org/10.3390/en14051331</ext-link>
  67. Segala G., Doriguzzi-Corin R., Peroni C., Gerola M., Siracusa D. EECO: An AI-Based Algorithm for Energy- Efficient Comfort Optimisation. <em>Energies (Basel)</em> 2023:16(21):7334. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16217334" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16217334</a>">https://doi.org/10.3390/en16217334</ext-link>
  68. Ntafalias A. <em>et al.</em> Smart buildings with legacy equipment: A case study on energy savings and cost reduction through an IoT platform in Ireland and Greece. <em>Results in Engineering</em> 2024:22:102095. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rineng.2024.102095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rineng.2024.102095</a>">https://doi.org/10.1016/j.rineng.2024.102095</ext-link>
DOI: https://doi.org/10.2478/rtuect-2025-0036 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 527 - 539
Submitted on: Mar 19, 2025
Accepted on: Aug 27, 2025
Published on: Sep 12, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Dalia Mohammed Talat Ebrahim Ali, Violeta Motuzienė, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.