References
- AGFW, Prognos AG, Hamburg Institut. Perspektive der Fernwärme. Maßnahmenprogramm 2030. Aus- und Umbau städtischer Fernwärme als Beitrag einer sozial-ökologischen Wärmepolitik 2020 (AGFW, Prognos AG, Hamburg Institute. District Heating Perspectives. 2030 Action Plan. Expansion and Conversion of Urban District Heating as a Contribution to a Socio-Ecological Heating Policy 2020). [Online]. [Accessed 25.04.2025]. Available: https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf (In German)
- Bosseler B. Managing the Crowded Underground. IKT Research & Testing 2012–2014, 2014.
- Bosseler B., Goerke M. Crowded Underground. IKT Research & Testing 2012–2014, 2014.
- Klameth M., Weidlich I., Achmus M. On the radial contact pressure of piggy-back laid Buried Pipes for District Heating. In 13th International Symposium on district heating and cooling: 3rd of September – 4th of September, Copenhagen, Denmark.
- Deutsches Institut für Normung e.V. DIN EN ISO 10456:2010-05: Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009); German version EN ISO 10456:2007 + AC:2009(DIN EN ISO 10456:2010-05). Berlin: Beuth, 2010.
- Madan V., Weidlich I. Investigation on Relative Heat Losses and Gains of Heating and Cooling Networks. Environmental and Climate Technologies 2021:25(1):479–490. https://doi.org/10.2478/rtuect-2021-0035
- Hillebrand B., Blokker E. J. M. Modeling the Influence of District Heating Systems on Drinking Water Temperatures in Domestic Drinking Water Systems within Domestic Properties. In: Baldwin L. A., Gude V. G., (eds). World Environmental and Water Resources Congress 2021. American Society of Civil Engineers, 2021. https://doi.org/10.1061/9780784483466.088
- Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. Subsurface urban heat islands in German cities. Science of The Total Environment 2013:442:123–133. https://doi.org/10.1016/j.scitotenv.2012.10.043
- Agudelo-Vera C. M., Blokker M., Kater H. de, Lafort R. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. Drinking Water Engineering and Science 2017:10(2):83–91. https://doi.org/10.5194/dwes-10-83-2017
- Benz S. A., Bayer P., Menberg K., Jung S., Blum P. Spatial resolution of anthropogenic heat fluxes into urban aquifers. Science of the Total Environment 2015:524–525:427–439. https://doi.org/10.1016/j.scitotenv.2015.04.003
- DVGW. Technical rules for water supply systems – Part 1: Design (W 400-1:2015-02), 2015.
- Bøhm B. On transient heat losses from buried district heating pipes. International Journal of Energy Research 2000:24(15):1311–1334. https://doi.org/10.1002/1099-114x(200012)24:15
- Dalla Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–18. https://doi.org/10.1016/j.energy.2011.01.024
- Persson T., Wollerstrand J. Calculation of Heat Flow from buried Pipes using a time-dependent Finite Element Model. In: Elmegaard B., Sporring J., Erleben K., Sorensen K., (eds). Proceedings of SIMS 2004: 45th International Conference of Scandinavian Simulation Society, 2004.
- Danielewicz J., Śniechowska B., Sayegh M. A., Fidorów N., Jouhara H. Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. Energy 2016:108:172–84. https://doi.org/10.1016/j.energy.2015.07.012
- CEN. EN 13941-1:2019+A1:2021 – District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design 2021.
- Abu-Hamdeh N. H. Thermal Properties of Soils as affected by Density and Water Content. Biosystems Engineering 2003:86(1):97–102. https://doi.org/10.1016/S1537-5110(03)00112-0
- Perpar M., Rek Z., Bajric S., Zun I. Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation. Energy 2012:44(1):197–210. https://doi.org/10.1016/j.energy.2012.06.037
- Bristow K. L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology 1998:89(2):75–84. https://doi.org/10.1016/S0168-1923(97)00065-8
- Schuchardt G. K., Weidlich I. Sensitivity analysis of the conception of small scale district heating networks on the thermal conductivity of the surrounding soil. Energy Procedia 2017:128:136–43. https://doi.org/10.1016/j.egypro.2017.09.028
- Eslami H., Cuisinier O., Masrouri F. Modelling of coupled heat and moisture flows around a buried electrical cable. E3S Web Conf. 2016:9:16011. https://doi.org/10.1051/e3sconf/20160916011
- Jarfelt U., Ramnäs O. New materials and constructions for improving the quality and livetime of district heating pipes including joints – thermal, mechanical and environmental performance. IEA DHC Annex VIII. 8DHC-08-01. Sittard: SenterNovem, 2008.