AGFW, Prognos AG, Hamburg Institut. Perspektive der Fernwärme. Maßnahmenprogramm 2030. Aus- und Umbau städtischer Fernwärme als Beitrag einer sozial-ökologischen Wärmepolitik 2020 (AGFW, Prognos AG, Hamburg Institute. District Heating Perspectives. 2030 Action Plan. Expansion and Conversion of Urban District Heating as a Contribution to a Socio-Ecological Heating Policy 2020). [Online]. [Accessed 25.04.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf">https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf</ext-link> (In German)
Klameth M., Weidlich I., Achmus M. On the radial contact pressure of piggy-back laid Buried Pipes for District Heating. In 13<sup>th</sup> International Symposium on district heating and cooling: 3<sup>rd</sup> of September – 4<sup>th</sup> of September, Copenhagen, Denmark.
Deutsches Institut für Normung e.V. DIN EN ISO 10456:2010-05: Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009); German version EN ISO 10456:2007 + AC:2009(DIN EN ISO 10456:2010-05). Berlin: Beuth, 2010.
Hillebrand B., Blokker E. J. M. Modeling the Influence of District Heating Systems on Drinking Water Temperatures in Domestic Drinking Water Systems within Domestic Properties. In: Baldwin L. A., Gude V. G., (eds). World Environmental and Water Resources Congress 2021. American Society of Civil Engineers, 2021. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1061/9780784483466.088" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/9780784483466.088</a>">https://doi.org/10.1061/9780784483466.088</ext-link>
Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. Subsurface urban heat islands in German cities. <em>Science of The Total Environment</em> 2013:442:123–133. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.scitotenv.2012.10.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2012.10.043</a>">https://doi.org/10.1016/j.scitotenv.2012.10.043</ext-link>
Agudelo-Vera C. M., Blokker M., Kater H. de, Lafort R. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. <em>Drinking Water Engineering and Science</em> 2017:10(2):83–91. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5194/dwes-10-83-2017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5194/dwes-10-83-2017</a>">https://doi.org/10.5194/dwes-10-83-2017</ext-link>
Benz S. A., Bayer P., Menberg K., Jung S., Blum P. Spatial resolution of anthropogenic heat fluxes into urban aquifers. <em>Science of the Total Environment</em> 2015:524–525:427–439. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.scitotenv.2015.04.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2015.04.003</a>">https://doi.org/10.1016/j.scitotenv.2015.04.003</ext-link>
Bøhm B. On transient heat losses from buried district heating pipes. <em>International Journal of Energy Research</em> 2000:24(15):1311–1334. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/1099-114x(200012)24:15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/1099-114x(200012)24:15</a>">https://doi.org/10.1002/1099-114x(200012)24:15</ext-link>
Dalla Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. <em>Energy</em> 2011:36(5):2407–18. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2011.01.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2011.01.024</a>">https://doi.org/10.1016/j.energy.2011.01.024</ext-link>
Persson T., Wollerstrand J. Calculation of Heat Flow from buried Pipes using a time-dependent Finite Element Model. In: Elmegaard B., Sporring J., Erleben K., Sorensen K., (eds). Proceedings of SIMS 2004: 45<sup>th</sup> International Conference of Scandinavian Simulation Society, 2004.
Danielewicz J., Śniechowska B., Sayegh M. A., Fidorów N., Jouhara H. Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. <em>Energy</em> 2016:108:172–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2015.07.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2015.07.012</a>">https://doi.org/10.1016/j.energy.2015.07.012</ext-link>
CEN. EN 13941-1:2019+A1:2021 – District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design 2021.
Abu-Hamdeh N. H. Thermal Properties of Soils as affected by Density and Water Content. <em>Biosystems Engineering</em> 2003:86(1):97–102. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1537-5110(03)00112-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1537-5110(03)00112-0</a>">https://doi.org/10.1016/S1537-5110(03)00112-0</ext-link>
Bristow K. L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. <em>Agricultural and Forest Meteorology</em> 1998:89(2):75–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0168-1923(97)00065-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0168-1923(97)00065-8</a>">https://doi.org/10.1016/S0168-1923(97)00065-8</ext-link>
Schuchardt G. K., Weidlich I. Sensitivity analysis of the conception of small scale district heating networks on the thermal conductivity of the surrounding soil. <em>Energy Procedia</em> 2017:128:136–43. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2017.09.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2017.09.028</a>">https://doi.org/10.1016/j.egypro.2017.09.028</ext-link>
Jarfelt U., Ramnäs O. New materials and constructions for improving the quality and livetime of district heating pipes including joints – thermal, mechanical and environmental performance. IEA DHC Annex VIII. 8DHC-08-01. Sittard: SenterNovem, 2008.