Have a personal or library account? Click to login
Thermal Behaviour of Piggyback-Laid District Heating and District Cooling Pipes Cover

Thermal Behaviour of Piggyback-Laid District Heating and District Cooling Pipes

Open Access
|Sep 2025

References

  1. AGFW, Prognos AG, Hamburg Institut. Perspektive der Fernwärme. Maßnahmenprogramm 2030. Aus- und Umbau städtischer Fernwärme als Beitrag einer sozial-ökologischen Wärmepolitik 2020 (AGFW, Prognos AG, Hamburg Institute. District Heating Perspectives. 2030 Action Plan. Expansion and Conversion of Urban District Heating as a Contribution to a Socio-Ecological Heating Policy 2020). [Online]. [Accessed 25.04.2025]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf">https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf</ext-link> (In German)
  2. Bosseler B. Managing the Crowded Underground. IKT Research &amp; Testing 2012–2014, 2014.
  3. Bosseler B., Goerke M. Crowded Underground. IKT Research &amp; Testing 2012–2014, 2014.
  4. Klameth M., Weidlich I., Achmus M. On the radial contact pressure of piggy-back laid Buried Pipes for District Heating. In 13<sup>th</sup> International Symposium on district heating and cooling: 3<sup>rd</sup> of September – 4<sup>th</sup> of September, Copenhagen, Denmark.
  5. Deutsches Institut für Normung e.V. DIN EN ISO 10456:2010-05: Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009); German version EN ISO 10456:2007 + AC:2009(DIN EN ISO 10456:2010-05). Berlin: Beuth, 2010.
  6. Madan V., Weidlich I. Investigation on Relative Heat Losses and Gains of Heating and Cooling Networks. <em>Environmental and Climate Technologies</em> 2021:25(1):479–490. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2021-0035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2021-0035</a>">https://doi.org/10.2478/rtuect-2021-0035</ext-link>
  7. Hillebrand B., Blokker E. J. M. Modeling the Influence of District Heating Systems on Drinking Water Temperatures in Domestic Drinking Water Systems within Domestic Properties. In: Baldwin L. A., Gude V. G., (eds). World Environmental and Water Resources Congress 2021. American Society of Civil Engineers, 2021. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1061/9780784483466.088" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/9780784483466.088</a>">https://doi.org/10.1061/9780784483466.088</ext-link>
  8. Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. Subsurface urban heat islands in German cities. <em>Science of The Total Environment</em> 2013:442:123–133. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.scitotenv.2012.10.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2012.10.043</a>">https://doi.org/10.1016/j.scitotenv.2012.10.043</ext-link>
  9. Agudelo-Vera C. M., Blokker M., Kater H. de, Lafort R. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. <em>Drinking Water Engineering and Science</em> 2017:10(2):83–91. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5194/dwes-10-83-2017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5194/dwes-10-83-2017</a>">https://doi.org/10.5194/dwes-10-83-2017</ext-link>
  10. Benz S. A., Bayer P., Menberg K., Jung S., Blum P. Spatial resolution of anthropogenic heat fluxes into urban aquifers. <em>Science of the Total Environment</em> 2015:524–525:427–439. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.scitotenv.2015.04.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.scitotenv.2015.04.003</a>">https://doi.org/10.1016/j.scitotenv.2015.04.003</ext-link>
  11. DVGW. Technical rules for water supply systems – Part 1: Design (W 400-1:2015-02), 2015.
  12. Bøhm B. On transient heat losses from buried district heating pipes. <em>International Journal of Energy Research</em> 2000:24(15):1311–1334. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/1099-114x(200012)24:15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/1099-114x(200012)24:15</a>">https://doi.org/10.1002/1099-114x(200012)24:15</ext-link>
  13. Dalla Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. <em>Energy</em> 2011:36(5):2407–18. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2011.01.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2011.01.024</a>">https://doi.org/10.1016/j.energy.2011.01.024</ext-link>
  14. Persson T., Wollerstrand J. Calculation of Heat Flow from buried Pipes using a time-dependent Finite Element Model. In: Elmegaard B., Sporring J., Erleben K., Sorensen K., (eds). Proceedings of SIMS 2004: 45<sup>th</sup> International Conference of Scandinavian Simulation Society, 2004.
  15. Danielewicz J., Śniechowska B., Sayegh M. A., Fidorów N., Jouhara H. Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. <em>Energy</em> 2016:108:172–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2015.07.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2015.07.012</a>">https://doi.org/10.1016/j.energy.2015.07.012</ext-link>
  16. CEN. EN 13941-1:2019+A1:2021 – District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design 2021.
  17. Abu-Hamdeh N. H. Thermal Properties of Soils as affected by Density and Water Content. <em>Biosystems Engineering</em> 2003:86(1):97–102. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1537-5110(03)00112-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1537-5110(03)00112-0</a>">https://doi.org/10.1016/S1537-5110(03)00112-0</ext-link>
  18. Perpar M., Rek Z., Bajric S., Zun I. Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation. <em>Energy</em> 2012:44(1):197–210. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2012.06.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2012.06.037</a>">https://doi.org/10.1016/j.energy.2012.06.037</ext-link>
  19. Bristow K. L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. <em>Agricultural and Forest Meteorology</em> 1998:89(2):75–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0168-1923(97)00065-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0168-1923(97)00065-8</a>">https://doi.org/10.1016/S0168-1923(97)00065-8</ext-link>
  20. Schuchardt G. K., Weidlich I. Sensitivity analysis of the conception of small scale district heating networks on the thermal conductivity of the surrounding soil. <em>Energy Procedia</em> 2017:128:136–43. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2017.09.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2017.09.028</a>">https://doi.org/10.1016/j.egypro.2017.09.028</ext-link>
  21. Eslami H., Cuisinier O., Masrouri F. Modelling of coupled heat and moisture flows around a buried electrical cable. <em>E3S Web Conf</em>. 2016:9:16011. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1051/e3sconf/20160916011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/e3sconf/20160916011</a>">https://doi.org/10.1051/e3sconf/20160916011</ext-link>
  22. Jarfelt U., Ramnäs O. New materials and constructions for improving the quality and livetime of district heating pipes including joints – thermal, mechanical and environmental performance. IEA DHC Annex VIII. 8DHC-08-01. Sittard: SenterNovem, 2008.
DOI: https://doi.org/10.2478/rtuect-2025-0034 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 500 - 511
Submitted on: Mar 18, 2025
Accepted on: Aug 21, 2025
Published on: Sep 10, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Stefan Dollhopf, Aaron Wieland, Ingo Weidlich, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.