Marrasso E., Martone C., Pallotta G., Roselli C., Sasso M. A novel methodology and a tool for supporting the transition of districts and communities in Positive Energy Districts. Energy and Buildings 2024:318:114435. https://doi.org/10.1016/j.enbuild.2024.114435">https://doi.org/10.1016/j.enbuild.2024.114435
Guarino F., Rincione R., Mateu C., Teixidó M., Cabeza L. F., Cellura M. Renovation assessment of building districts: Case studies and implications to the positive energy districts definition. Energy and Buildings 2023:296:113414. https://doi.org/10.1016/j.enbuild.2023.113414">https://doi.org/10.1016/j.enbuild.2023.113414
Volpe R., Bisello A., Tuerk A., Guarino F., Giancola E., Sanchez M. N., Tumminia G., Marrasso E., Pallotta G., Cutore E., Cellura M., Fichera A., Longo S., Roselli C., Sasso M., Zhang X., Marotta I., Brunetti A., Rincione R., Reda F. Linking environmental impact assessment and Positive Energy Districts: A literature review. Cleaner Environmental Systems 2025:16:100264. https://doi.org/10.1016/j.cesys.2025.100264">https://doi.org/10.1016/j.cesys.2025.100264
Healey Trulsrud T., van der Leer J. Towards a positive energy balance: A comparative analysis of the planning and design of four positive energy districts and neighbourhoods in Norway and Sweden. Energy and Buildings 2024:318:114429. https://doi.org/10.1016/j.enbuild.2024.114429">https://doi.org/10.1016/j.enbuild.2024.114429
Schneider S. Definition of Positive Energy Districts Cities4 PEDs WORKPACKAGE 2 Definition of Positive Energy Districts Cities4PEDs WP2 Deliverable, 2023.
SET-Plan ACTION n°3.2 Implementation Plan Europe to become a global role model in integrated, innovative solutions for the planning, deployment, and replication of Positive Energy Districts, 2018.
Ahrens Kayayan V., Cabral D., Israelsson K., Gustafsson M. Positive energy districts in Sweden: The impact from heat Pumps, photovoltaic Systems, and energy recovery from district heating return pipe. Energy and Buildings 2025:334:115471. https://doi.org/10.1016/j.enbuild.2025.115471">https://doi.org/10.1016/j.enbuild.2025.115471
Aparisi-Cerdá I., Ribó-Pérez D., Gómez-Navarro T., García-Melón M., Peris-Blanes J. Prioritising Positive Energy Districts to achieve carbon neutral cities: Delphi-DANP approach. Renewable and Sustainable Energy Reviews 2024:203:114764. https://doi.org/10.1016/j.rser.2024.114764">https://doi.org/10.1016/j.rser.2024.114764
Bruck A., Diaz Ruano S., Auer H. Values and implications of building envelope retrofitting for residential Positive Energy Districts. Energy and Buildings 2022:275:112493. https://doi.org/10.1016/j.enbuild.2022.112493">https://doi.org/10.1016/j.enbuild.2022.112493
Apostolopoulos V., Mamounakis I., Seitaridis A., Tagkoulis N., Kourkoumpas D-S., Iliadis P., Angelakoglou K., Nikolopoulos N. Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool. Applied Energy 2023:334:120710. https://doi.org/10.1016/j.apenergy.2023.120710">https://doi.org/10.1016/j.apenergy.2023.120710
Bartolucci B., Frasca F., Bertolin C. LCA- and nZER-based methodology for identifying optimal low environmental impact interventions for existing buildings. Energy for Sustainable Development 2024:82:101543. https://doi.org/10.1016/j.esd.2024.101543">https://doi.org/10.1016/j.esd.2024.101543
Jorge-Ortiz A., Braulio-Gonzalo M., Bovea M. D. Environmental and economic performance of residential buildings: LCA|LCC tool and case study in Colombia. Building and Environment 2025:269:112459. https://doi.org/10.1016/j.buildenv.2024.112459">https://doi.org/10.1016/j.buildenv.2024.112459
Slavkovic K., Stephan A. Dynamic life cycle assessment of buildings and building stocks – A review. Renewable and Sustainable Energy Reviews 2025:212:115262. https://doi.org/10.1016/j.rser.2024.115262">https://doi.org/10.1016/j.rser.2024.115262
Carrera-Rivera A., Ochoa W., Larrinaga F., Lasa G. How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX 2022:9:101895. https://doi.org/10.1016/j.mex.2022.101895">https://doi.org/10.1016/j.mex.2022.101895
Di Loreto S., Sangiorgio V., Bagagli M., Montelpare S. Multi-criteria approach for the energy and environmental impact evaluation in urban districts in the central Mediterranean area. Sustainable Cities and Society 2025:120:106179. https://doi.org/10.1016/j.scs.2025.106179">https://doi.org/10.1016/j.scs.2025.106179
Volpe R., Cutore E., Fichera A. Design and Operational Indicators to Foster the Transition of Existing Renewable Energy Communities towards Positive Energy Districts. Journal of Sustainable Development of Energy, Water and Environment Systems 2024:12(2):1120513. https://doi.org/10.13044/j.sdewes.d12.0513">https://doi.org/10.13044/j.sdewes.d12.0513
Natanian J., Guarino F., Manapragada N., Magyari A., Naboni E., De Luca F., Cellura S., Brunetti A., Reith A. Ten questions on tools and methods for positive energy districts. Building and Environment 2024:255:111429. https://doi.org/10.1016/j.buildenv.2024.111429">https://doi.org/10.1016/j.buildenv.2024.111429
Sassenou L. N., Olivieri F., Civiero P., Olivieri L. Methodologies for the design of positive energy districts: A scoping literature review and a proposal for a new approach (PlanPED). Building and Environment 2024:260:111667. https://doi.org/10.1016/j.buildenv.2024.111667">https://doi.org/10.1016/j.buildenv.2024.111667
Bruckner H., Alyokhina S., Schneider S., Binder M., Abdin Z. U., Santbergen R., Verkou M., Zeman M., Isabella O., Pagliarini M., Botta C., Streche A. Lessons Learned from Four Real-Life Case Studies: Energy Balance Calculations for Implementing Positive Energy Districts. Energies 2025:18(3):560. https://doi.org/10.3390/en18030560">https://doi.org/10.3390/en18030560
Sertsöz M. Towards a Synthetic Positive Energy District (PED) in İstanbul: Balancing Cost, Mobility, and Environmental Impact. Buildings 2024:14(10):3153. https://doi.org/10.3390/buildings14103153">https://doi.org/10.3390/buildings14103153
Viesi D., Borelli G., Ricciuti S., Pernigotto G., Mahbub M. S. Modeling the Optimal Transition of an Urban Neighborhood towards an Energy Community and a Positive Energy District. Energies 2024:17(16):4047. https://doi.org/10.3390/en17164047">https://doi.org/10.3390/en17164047
Casamassima L., Bottecchia L., Bruck A., Kranzl L., Haas R. Economic, social, and environmental aspects of Positive Energy Districts—A review. Wiley Interdisciplinary Reviews 2022:11(6):e452. https://doi.org/10.1002/wene.452">https://doi.org/10.1002/wene.452
Dolge K., Vicmane L. K., Bohvalovs G., Blumberga D. Energy Transition Reality Check: Are Municipalities Meeting the Mark? Environmental and Climate Technologies 2024:28(1):394–408. https://doi.org/10.2478/rtuect-2024-0031">https://doi.org/10.2478/rtuect-2024-0031
Citadini de Oliveira C., Catão Martins Vaz I., Ghisi E. Retrofit strategies to improve energy efficiency in buildings: An integrative review. Energy and Buildings 2024:321:114624. https://doi.org/10.1016/j.enbuild.2024.114624">https://doi.org/10.1016/j.enbuild.2024.114624
Rieksta M., Zarins E., Brumana G., Bazbauers G. Forecasting Heat Demand of Residential Buildings Connected to District Heating: The Case of Riga . Environmental and Climate Technologies 2025:29(1):68–83. https://doi.org/10.2478/rtuect-2025-0005">https://doi.org/10.2478/rtuect-2025-0005
Fahlstedt O., Rasmussen F. N., Temeljotov-Salaj A., Huang L., Bohne R. A. Building renovations and life cycle assessment – A scoping literature review. Renewable and Sustainable Energy Reviews 2024:203:114774. https://doi.org/10.1016/j.rser.2024.114774">https://doi.org/10.1016/j.rser.2024.114774
Zimmermann R. K., Rasmussen F. N., Birgisdóttir H. Challenges in benchmarking whole-life GHG emissions from renovation cases: Evidence from 23 real-life cases. Energy and Buildings 2023:301:113639. https://doi.org/10.1016/j.enbuild.2023.113639">https://doi.org/10.1016/j.enbuild.2023.113639
Serrano T., Kampmann T., Ryberg M. W. Comparative Life-Cycle Assessment of restoration and renovation of a traditional Danish farmer house. Building and Environment 2022:219:109174. https://doi.org/10.1016/j.buildenv.2022.109174">https://doi.org/10.1016/j.buildenv.2022.109174
Arbulu M., Oregi X., Etxepare L. Environmental and economic optimization and prioritization tool-kit for residential building renovation strategies with life cycle approach. Building and Environment 2023:228:109813. https://doi.org/10.1016/j.buildenv.2022.109813">https://doi.org/10.1016/j.buildenv.2022.109813
Khadim N., Agliata R., Han Q., Mollo L. From circularity to sustainability: Advancing the whole building circularity indicator with Life Cycle Assessment (WBCI-LCA). Building and Environment 2025:269:112413. https://doi.org/10.1016/j.buildenv.2024.112413">https://doi.org/10.1016/j.buildenv.2024.112413
Arbulu M., Oregi X., Etxepare L., Fuster A., Srinivasan R. S. Decarbonisation of the Basque Country residential stock by a holistic enviro-economic assessment of renovation strategies under the life cycle thinking for climate risk mitigation. Sustainable Cities and Society 2024:117:105963. https://doi.org/10.1016/j.scs.2024.105963">https://doi.org/10.1016/j.scs.2024.105963
Kertsmik K. A., Arumägi E., Hallik J., Kalamees T. Low carbon emission renovation of historical residential buildings. Energy Reports 2024:11:3836–3847. https://doi.org/10.1016/j.egyr.2024.03.030">https://doi.org/10.1016/j.egyr.2024.03.030
Luo X., Ren M., Zhao J., Wang Z., Ge J., Gao W. Life cycle assessment for carbon emission impact analysis for the renovation of old residential areas. Journal of Cleaner Production 2022:367:132930. https://doi.org/10.1016/j.jclepro.2022.132930">https://doi.org/10.1016/j.jclepro.2022.132930
Warrier G. A., Palaniappan S., Habert G. Classification of sources of uncertainty in building LCA. Energy and Buildings 2024:305:113892. https://doi.org/10.1016/j.enbuild.2024.113892">https://doi.org/10.1016/j.enbuild.2024.113892
Asdrubali F., Fronzetti Colladon A., Segneri L., Gandola D. M LCA and energy efficiency in buildings: Mapping more than twenty years of research. Energy and Buildings 2024:321:114684. https://doi.org/10.1016/j.enbuild.2024.114684">https://doi.org/10.1016/j.enbuild.2024.114684
Argalis P. P., Sinka M., M Andzs., Korjakins A., Bajare D. Development of New Bio-Based Building Materials by Utilising Manufacturing Waste. Environmental and Climate Technologies 2024:28(1):58–70. https://doi.org/10.2478/rtuect-2024-0006">https://doi.org/10.2478/rtuect-2024-0006
Salata F., Golasi I., Domestico U., Banditelli M., Basso G. L., Nastasi B., Vollaro A. d. L. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings. Energy Conversion and Management 2017:138:61–76. https://doi.org/10.1016/j.enconman.2017.01.062">https://doi.org/10.1016/j.enconman.2017.01.062
Kim D., Seomun G., Lee Y., Cho H., Chin K., Kim M. H. Forecasting building energy demand and on-site power generation for residential buildings using long and short-term memory method with transfer learning. Applied Energy 2024:368:123500. https://doi.org/10.1016/j.apenergy.2024.123500">https://doi.org/10.1016/j.apenergy.2024.123500
Martinopoulos G., Tsimpoukis A., Sougkakis V., Dallas P., Angelakoglou K., Giourka P., Nikolopoulos N. A Comprehensive Approach to Nearly Zero Energy Buildings and Districts: Analysis of a Region Undergoing Energy Transition. Energies 2024:17(22):5581. https://doi.org/10.3390/en17225581">https://doi.org/10.3390/en17225581
Ren M., Mitchell C. R., Mo W. Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems. Science of The Total Environment 2020:722:137932. https://doi.org/10.1016/j.scitotenv.2020.137932">https://doi.org/10.1016/j.scitotenv.2020.137932
Berville C., Croitoru C., Bode F. Life Cycle Analysis in the Context of Smart Cities. E3S Web of Conferences 2025:608:05029. https://doi.org/10.1051/e3sconf/202560805029">https://doi.org/10.1051/e3sconf/202560805029
Dorr E., François C., Poulhès A., Wurtz A. A life cycle assessment method to support cities in their climate change mitigation strategies. Sustainable Cities and Society 2022:85:104052. https://doi.org/10.1016/j.scs.2022.104052">https://doi.org/10.1016/j.scs.2022.104052