European Commission, Energy efficiency in buildings, 2020 [Online]. [Accessed 21.02.2025]. Available: https://ec.europa.eu/info/sites/default/files/energy_climate_change_environment/events/documents/in_focus_energy_efficiency_in_buildings_en.pdf
European Commission, Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and directive 2012/27/EU on energy efficiency, 2018.
Carratt A., Kokogiannakis G., Daly D. A critical review of methods for the performance evaluation of passive thermal retrofits in residential buildings. Journal of Cleaner Production 2020:263:121408. https://doi.org/10.1016/j.jclepro.2020.121408">https://doi.org/10.1016/j.jclepro.2020.121408
Tian Z., Zhang X., Jin X., Zhou X., Si B., Shi X. Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy and Buildings 2018:158:1306–1316. https://doi.org/10.1016/j.enbuild.2017.11.022">https://doi.org/10.1016/j.enbuild.2017.11.022
Kheiri F. A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews 2018:92:897–920. https://doi.org/10.1016/j.rser.2018.04.080">https://doi.org/10.1016/j.rser.2018.04.080
Arbulu M., Oregi X., Etxepare L. Fuster A., Srinivasan R. S. Decarbonisation of the Basque Country residential stock by a holistic enviro-economic assessment of renovation strategies under the life cycle thinking for climate risk mitigation. Sustainable Cities and Society 2024:117:105963. https://doi.org/10.1016/j.scs.2024.105963">https://doi.org/10.1016/j.scs.2024.105963
Ministerio de Transportes Movilidad y Agenda Urbana. Gobierno de España, CTE - Código Técnico de la Edificación, 2019 (Ministry of Transport, Mobility, and Urban Agenda. Government of Spain, CTE - Technical Building Code, 2019. [Online]. [Accessed 21.02.2025]. Available: https://www.codigotecnico.org/ (In Spanish).
Fletcher M. J., Johnston D. K., Glew D. W., Parker J. M. An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Building and Environment 2017:121:106–118. https://doi.org/10.1016/j.buildenv.2017.05.024">https://doi.org/10.1016/j.buildenv.2017.05.024
Sameni S. M. T., Gaterell M., Montazami A., Ahmed A. Overheating investigation in UK social housing flats built to the Passivhaus standard. Building and Environment 2015:92:222–235. https://doi.org/10.1016/j.buildenv.2015.03.030">https://doi.org/10.1016/j.buildenv.2015.03.030
Yaqubi O., Guernouti S., Rodler A., Musy M. Mapping indoor overheating exposure rate at city scale: A data-driven method based on building typologies and surrogate-modelling. Energy and Buildings 2025:332:115441. https://doi.org/10.1016/j.enbuild.2025.115441">https://doi.org/10.1016/j.enbuild.2025.115441
Wang Y., Petrou G., Symonds P., Hsu S-C., Milner J., Hutchinson E., Davies M., Macintyre H. L. Investigating the impacts of home energy retrofit on the indoor environment through co-simulation: A UK case study. Journal of Building Engineering 2025:100:111794. https://doi.org/10.1016/j.jobe.2025.111794">https://doi.org/10.1016/j.jobe.2025.111794
Hernandez-Cruz P., Flores-Abascal I., Hidalgo-Betanzos J. M., Almeida M., Erkoreka-Gonzalez A. Environmental and energy analysis of the renovation of social housing buildings under various climate change scenarios and user profiles. Journal of Building Engineering 2024:98:111164. https://doi.org/10.1016/j.jobe.2024.111164">https://doi.org/10.1016/j.jobe.2024.111164
Kovats R. S., Hajat S. Heat stress and public health: A critical review. Annual Review of Public Health 2008:29:41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843">https://doi.org/10.1146/annurev.publhealth.29.020907.090843
Fouillet A., Rey G., Laurent F., Pavillon G., Bellec S., Guihenneuc-Jouyaux C., Clavel J., Jougla E., Hémon D. Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health 2006:80(1):16–24. https://doi.org/10.1007/s00420-006-0089-4">https://doi.org/10.1007/s00420-006-0089-4
Hashemi A., Dungrani M. Indoor Environmental Quality and Health Implications of Building Retrofit and Occupant Behaviour in Social Housing †. Sustainability 2025:17(1):264. https://doi.org/10.3390/su17010264">https://doi.org/10.3390/su17010264
Otaegi J., Hernández R. J., Oregi X., Martín-Garín A., Rodríguez-Vidal I. Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country. Buildings 2022:12(7):1047. https://doi.org/10.3390/buildings12071047">https://doi.org/10.3390/buildings12071047
Sola-Caraballo J., Serrano-Jiménez A., Rivera-Gomez C., Galan-Marin C. Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City. Remote Sensing 2025:17(2):231. https://doi.org/10.3390/rs17020231">https://doi.org/10.3390/rs17020231
Ministerio de Sanidad - Gobierno de España, Plan nacional de actuaciones preventivas de los efectos del exceso de temperaturas sobre la salud, 2022 [Online]. [Accessed: 05.03.2025]. Available: https://www.sanidad.gob.es/areas/sanidadAmbiental/riesgosAmbientales/calorExtremo/publicaciones/planesAnteriores/docs/PlanNacionalExcesoTemperaturas_2022.pdf
Gobierno de España, NBE-CT-79. Norma Básica de la Edificación. Condiciones Térmicas en los edificios (Government of Spain, NBE-CT-79. Basic Building Standard. Thermal Conditions in Buildings). 1979. (In Spanish).
Martín-Garín A., Millán-García J. A., Hidalgo-Betanzos J. M., Hernández-Minguillón R. J., Baïri A. Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests. Energies 2020:13(24):6727. https://doi.org/10.3390/en13246727">https://doi.org/10.3390/en13246727
Arbulu M., Oregi X., Etxepare L. Parametric simulation tool for the enviro-economic evaluation of energy renovation strategies in residential buildings with life cycle thinking: PARARENOVATE-LCT. Energy and Buildings 2024:312:114182. https://doi.org/10.1016/j.enbuild.2024.114182">https://doi.org/10.1016/j.enbuild.2024.114182
ASHRAE, International Weather Files for Energy Calculations 2.0 (IWEC2), 2012 [Online]. [Accessed 05.03.2025]. Available: https://www.ashrae.org/technical-resources/bookstore/ashrae-international-weather-files-for-energycalculations-2-0-iwec2
Figueroa-Lopez A., Arias A., Oregi X., Rodríguez I. Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. Journal of Building Engineering 2021:43:102607. https://doi.org/10.1016/j.jobe.2021.102607">https://doi.org/10.1016/j.jobe.2021.102607
Gamero-Salinas J., Monge-Barrio A., Kishnani N., López-Fidalgo J., Sánchez-Ostiz A. Passive cooling design strategies as adaptation measures for lowering the indoor overheating risk in tropical climates. Energy and Buildings 2021:252:111417. https://doi.org/10.1016/j.enbuild.2021.111417">https://doi.org/10.1016/j.enbuild.2021.111417
Arbulu M., Perez-Bezos S., Figueroa-Lopez A., Oregi X. Opportunities and Barriers of Calibrating Residential Building Performance Simulation Models Using Monitored and Survey-Based Occupant Behavioural Data: A Case Study in Northern Spain. Buildings 2024:14(7):1911. https://doi.org/10.3390/buildings14071911">https://doi.org/10.3390/buildings14071911