Have a personal or library account? Click to login
Overheating Risk Assessment in Insulation-Based Energy Renovations in Spain Cover

Overheating Risk Assessment in Insulation-Based Energy Renovations in Spain

Open Access
|Aug 2025

References

  1. European Commission, Energy efficiency in buildings, 2020 [Online]. [Accessed 21.02.2025]. Available: https://ec.europa.eu/info/sites/default/files/energy_climate_change_environment/events/documents/in_focus_energy_efficiency_in_buildings_en.pdf
  2. European Commission, Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and directive 2012/27/EU on energy efficiency, 2018.
  3. European Union, Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 of April 2024.
  4. European Commission, Commission Recommendation (EU) 2019/786 of 8 May 2019 on building renovation.
  5. Carratt A., Kokogiannakis G., Daly D. A critical review of methods for the performance evaluation of passive thermal retrofits in residential buildings. Journal of Cleaner Production 2020:263:121408. https://doi.org/10.1016/j.jclepro.2020.121408">https://doi.org/10.1016/j.jclepro.2020.121408
  6. Tian Z., Zhang X., Jin X., Zhou X., Si B., Shi X. Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy and Buildings 2018:158:1306–1316. https://doi.org/10.1016/j.enbuild.2017.11.022">https://doi.org/10.1016/j.enbuild.2017.11.022
  7. Kheiri F. A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews 2018:92:897–920. https://doi.org/10.1016/j.rser.2018.04.080">https://doi.org/10.1016/j.rser.2018.04.080
  8. Arbulu M., Oregi X., Etxepare L. Fuster A., Srinivasan R. S. Decarbonisation of the Basque Country residential stock by a holistic enviro-economic assessment of renovation strategies under the life cycle thinking for climate risk mitigation. Sustainable Cities and Society 2024:117:105963. https://doi.org/10.1016/j.scs.2024.105963">https://doi.org/10.1016/j.scs.2024.105963
  9. Ministerio de Transportes Movilidad y Agenda Urbana. Gobierno de España, CTE - Código Técnico de la Edificación, 2019 (Ministry of Transport, Mobility, and Urban Agenda. Government of Spain, CTE - Technical Building Code, 2019. [Online]. [Accessed 21.02.2025]. Available: https://www.codigotecnico.org/ (In Spanish).
  10. Passive House Institute, Passive House certification, 2025 [Online]. [Accessed: 25.02.2025]. Available: https://passivehouse.com/
  11. Passive House Institute, EnerPHit Standard [Online]. [Accessed: 19.02.2025]. Available: https://passipedia.org/certification/enerphit
  12. Fletcher M. J., Johnston D. K., Glew D. W., Parker J. M. An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Building and Environment 2017:121:106–118. https://doi.org/10.1016/j.buildenv.2017.05.024">https://doi.org/10.1016/j.buildenv.2017.05.024
  13. Sameni S. M. T., Gaterell M., Montazami A., Ahmed A. Overheating investigation in UK social housing flats built to the Passivhaus standard. Building and Environment 2015:92:222–235. https://doi.org/10.1016/j.buildenv.2015.03.030">https://doi.org/10.1016/j.buildenv.2015.03.030
  14. Rodríguez Vidal I., Otaegi J., Oregi X. Thermal Comfort in NZEB Collective Housing in Northern Spain. Sustainability 2020:12(22):9630. https://doi.org/10.3390/su12229630">https://doi.org/10.3390/su12229630
  15. Yaqubi O., Guernouti S., Rodler A., Musy M. Mapping indoor overheating exposure rate at city scale: A data-driven method based on building typologies and surrogate-modelling. Energy and Buildings 2025:332:115441. https://doi.org/10.1016/j.enbuild.2025.115441">https://doi.org/10.1016/j.enbuild.2025.115441
  16. Wang Y., Petrou G., Symonds P., Hsu S-C., Milner J., Hutchinson E., Davies M., Macintyre H. L. Investigating the impacts of home energy retrofit on the indoor environment through co-simulation: A UK case study. Journal of Building Engineering 2025:100:111794. https://doi.org/10.1016/j.jobe.2025.111794">https://doi.org/10.1016/j.jobe.2025.111794
  17. Hernandez-Cruz P., Flores-Abascal I., Hidalgo-Betanzos J. M., Almeida M., Erkoreka-Gonzalez A. Environmental and energy analysis of the renovation of social housing buildings under various climate change scenarios and user profiles. Journal of Building Engineering 2024:98:111164. https://doi.org/10.1016/j.jobe.2024.111164">https://doi.org/10.1016/j.jobe.2024.111164
  18. Kovats R. S., Hajat S. Heat stress and public health: A critical review. Annual Review of Public Health 2008:29:41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843">https://doi.org/10.1146/annurev.publhealth.29.020907.090843
  19. Fouillet A., Rey G., Laurent F., Pavillon G., Bellec S., Guihenneuc-Jouyaux C., Clavel J., Jougla E., Hémon D. Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health 2006:80(1):16–24. https://doi.org/10.1007/s00420-006-0089-4">https://doi.org/10.1007/s00420-006-0089-4
  20. Hashemi A., Dungrani M. Indoor Environmental Quality and Health Implications of Building Retrofit and Occupant Behaviour in Social Housing †. Sustainability 2025:17(1):264. https://doi.org/10.3390/su17010264">https://doi.org/10.3390/su17010264
  21. Mitchell R., Natarajan S. Overheating risk in Passivhaus dwellings. Building Services Engineering Research and Technology 2019:40(4):446–469.
  22. Otaegi J., Hernández R. J., Oregi X., Martín-Garín A., Rodríguez-Vidal I. Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country. Buildings 2022:12(7):1047. https://doi.org/10.3390/buildings12071047">https://doi.org/10.3390/buildings12071047
  23. Sola-Caraballo J., Serrano-Jiménez A., Rivera-Gomez C., Galan-Marin C. Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City. Remote Sensing 2025:17(2):231. https://doi.org/10.3390/rs17020231">https://doi.org/10.3390/rs17020231
  24. Ministerio de Sanidad - Gobierno de España, Plan nacional de actuaciones preventivas de los efectos del exceso de temperaturas sobre la salud, 2022 [Online]. [Accessed: 05.03.2025]. Available: https://www.sanidad.gob.es/areas/sanidadAmbiental/riesgosAmbientales/calorExtremo/publicaciones/planesAnteriores/docs/PlanNacionalExcesoTemperaturas_2022.pdf
  25. Chartered Institution of Building Services Engineers, Guide A Environmental design, London: 2015. [Online]. [Accessed: 19.02.2025]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/guide-aenvironmental-design-2015/?id=a0q20000008I79JAAS
  26. Gobierno de España, NBE-CT-79. Norma Básica de la Edificación. Condiciones Térmicas en los edificios (Government of Spain, NBE-CT-79. Basic Building Standard. Thermal Conditions in Buildings). 1979. (In Spanish).
  27. Martín-Garín A., Millán-García J. A., Hidalgo-Betanzos J. M., Hernández-Minguillón R. J., Baïri A. Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests. Energies 2020:13(24):6727. https://doi.org/10.3390/en13246727">https://doi.org/10.3390/en13246727
  28. Arbulu M., Oregi X., Etxepare L. Parametric simulation tool for the enviro-economic evaluation of energy renovation strategies in residential buildings with life cycle thinking: PARARENOVATE-LCT. Energy and Buildings 2024:312:114182. https://doi.org/10.1016/j.enbuild.2024.114182">https://doi.org/10.1016/j.enbuild.2024.114182
  29. ASHRAE, International Weather Files for Energy Calculations 2.0 (IWEC2), 2012 [Online]. [Accessed 05.03.2025]. Available: https://www.ashrae.org/technical-resources/bookstore/ashrae-international-weather-files-for-energycalculations-2-0-iwec2
  30. Design Builder, Design Builder simulation tool, 2022. [Online]. [Accessed 05.03.2025]. Available: https://designbuilder.co.uk/
  31. U.S. Department of Energy’s (DOE) Building Technologies Office (BTO), Eppy 0.5.63, 2022 [Online]. Available: https://pypi.org/project/eppy/
  32. Figueroa-Lopez A., Arias A., Oregi X., Rodríguez I. Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. Journal of Building Engineering 2021:43:102607. https://doi.org/10.1016/j.jobe.2021.102607">https://doi.org/10.1016/j.jobe.2021.102607
  33. Gamero-Salinas J., Monge-Barrio A., Kishnani N., López-Fidalgo J., Sánchez-Ostiz A. Passive cooling design strategies as adaptation measures for lowering the indoor overheating risk in tropical climates. Energy and Buildings 2021:252:111417. https://doi.org/10.1016/j.enbuild.2021.111417">https://doi.org/10.1016/j.enbuild.2021.111417
  34. Arbulu M., Perez-Bezos S., Figueroa-Lopez A., Oregi X. Opportunities and Barriers of Calibrating Residential Building Performance Simulation Models Using Monitored and Survey-Based Occupant Behavioural Data: A Case Study in Northern Spain. Buildings 2024:14(7):1911. https://doi.org/10.3390/buildings14071911">https://doi.org/10.3390/buildings14071911
DOI: https://doi.org/10.2478/rtuect-2025-0030 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 447 - 459
Submitted on: Mar 17, 2025
Accepted on: Jun 19, 2025
Published on: Aug 21, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Markel Arbulu, Jorge Otaegi, Iñigo Rodríguez-Vidal, Xabat Oregi, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.