Have a personal or library account? Click to login
Techno-Economic Optimization of Solar Panel Installations: Balancing Thermal Performance and Economic Viability Cover

Techno-Economic Optimization of Solar Panel Installations: Balancing Thermal Performance and Economic Viability

Open Access
|Aug 2025

References

  1. Junedi M. M., Ludin N. A., Hamid N. H., Kathleen P. R., Hasila J., Ahmad Affandi N. A. Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems. Renewable and Sustainable Energy Reviews 2022:168:112799. https://doi.org/10.1016/j.rser.2022.112799">https://doi.org/10.1016/j.rser.2022.112799
  2. Breyer C. Low-cost solar power enables a sustainable energy industry system. Proceedings of the National Academy of Sciences 2021:118(49):e2116940118. https://doi.org/10.1073/pnas.2116940118">https://doi.org/10.1073/pnas.2116940118
  3. Albatayneh A., Albadaineh R. Evaluating Shading Effects of PV Systems: Discrepancies in Simulation Software and Energy Consumption. Environmental and Climate Technologies 2023:27(1):407–421. https://doi.org/10.2478/rtuect-2023-0030">https://doi.org/10.2478/rtuect-2023-0030
  4. Grinevičiūtė M., Valančius K. Virtual Prosumers and the Impact of Remote Solar Parks on Lithuania’s Buildings Decarbonization Efforts. Environmental and Climate Technologies 2024:28(1):312–328. https://doi.org/10.2478/rtuect-2024-0025">https://doi.org/10.2478/rtuect-2024-0025
  5. Valdmanis G., Rieksta M., Luksta I., Bazbauers G. Solar Energy Based Charging for Electric Vehicles at Fuel Stations. Environmental and Climate Technologies 2022:26(1):1169–1191. https://doi.org/10.2478/rtuect-2022-0088">https://doi.org/10.2478/rtuect-2022-0088
  6. Hasan D. S., Farhan M. S., ALRikabi H. TH. S. The effect of irradiance, tilt angle, and partial shading on PV performance. AIP Conference Proceedings 2023:2457(1):050008. https://doi.org/10.1063/5.0120692">https://doi.org/10.1063/5.0120692
  7. Khanafer K., Al-Masri A., Marafie A., Vafai K. Thermal performance of solar photovoltaic panel in hot climatic regions: Applicability and optimization analysis of PCM materials. Numerical Heat Transfer, Part A: Applications 2024:85(10):1612–1632. https://doi.org/10.1080/10407782.2023.2207732">https://doi.org/10.1080/10407782.2023.2207732
  8. Shaker L. M., Al-Amiery A. A., Hanoon M. M., Al-Azzawi W. K., Kadhum A. A. H. Examining the influence of thermal effects on solar cells: a comprehensive review. Sustainable Energy Research 2024:11(1):6. https://doi.org/10.1186/s40807-024-00100-8">https://doi.org/10.1186/s40807-024-00100-8
  9. Mohammad A. T., Al-Shohani W. A. M. Numerical and experimental investigation for analyzing the temperature influence on the performance of photovoltaic module. AIMS Energy 2022:10(5):1026–1045. https://doi.org/10.3934/energy.2022047">https://doi.org/10.3934/energy.2022047
  10. Green M. A., Emery K., Hishikawa Y., Warta W. Solar Cell Efficiency Tables (Version 35). Progress in Photovoltaics: Research and Applications 2010:18(2):144–150. https://doi.org/10.1002/pip.974">https://doi.org/10.1002/pip.974
  11. Dhass A. D., Natarajan E., Lakshmi P. An investigation of temperature effects on solar photovoltaic cells and modules. International Journal of Engineering, Transactions B: Applications 2014:27(11):1713–1722. https://doi.org/10.5829/idosi.ije.2014.27.11b.09">https://doi.org/10.5829/idosi.ije.2014.27.11b.09
  12. Williams H. J., Hashad K., Wang H., Zhang K. M. The potential for agrivoltaics to enhance solar farm cooling. Applied Energy 2023:332:120478. https://doi.org/10.1016/j.apenergy.2022.120478">https://doi.org/10.1016/j.apenergy.2022.120478
  13. Smith S. E., Viggiano B., Ali N., Silverman T. J., Obligado M., Calaf M., Cal R. B. Increased panel height enhances cooling for photovoltaic solar farms. Applied Energy 2022:325:119819. https://doi.org/10.1016/j.apenergy.2022.119819">https://doi.org/10.1016/j.apenergy.2022.119819
  14. Osma G., Ordóñez G., Hernández E., Quintero L., Torres M. The impact of height installation on the performance of PV panels integrated into a green roof in tropical conditions. WIT Transactions on Ecology and the Environment 2016:205:147–156. https://doi.org/10.2495/EQ160141">https://doi.org/10.2495/EQ160141
  15. Mamun M. A. A., Islam M. M., Hasanuzzaman M., Selvaraj J. Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment 2022:3(3):278–290. https://doi.org/10.1016/j.enbenv.2021.02.001">https://doi.org/10.1016/j.enbenv.2021.02.001
  16. N’Tsoukpoe K. E. Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context. Scientific African 2022:15:e01069. https://doi.org/10.1016/j.sciaf.2021.e01069">https://doi.org/10.1016/j.sciaf.2021.e01069
  17. Sharma G. S., Mahela O. P., Hussien M. G., Khan B., Padmanaban S., Shafik M. B., Elbarbary Z. M. S. Performance Evaluation of a MW-Size Grid-Connected Solar Photovoltaic Plant Considering the Impact of Tilt Angle. Sustainability 2022:14(3):1444. https://doi.org/10.3390/su14031444">https://doi.org/10.3390/su14031444
  18. Dubey S., Sarvaiya J. N., Seshadri B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review. Energy Procedia 2013:33:311–321. https://doi.org/10.1016/j.egypro.2013.05.072">https://doi.org/10.1016/j.egypro.2013.05.072
  19. Ur Rehman S., Farooq M., Qamar A., Usman M., Ahmad G., Sultan M., Saleem M. W., Hussain I., Imran M., Ali Q., Javaid M. Y., Siddiqui F. A. Experimental investigation to thermal performance of different photo voltaic modules for efficient system design. Alexandria Engineering Journal 2022:61(12):12623–12634. https://doi.org/10.1016/j.aej.2022.06.037">https://doi.org/10.1016/j.aej.2022.06.037
  20. Adeeb J., Farhan A., Al-Salaymeh A. Temperature Effect on Performance of Different Solar Cell Technologies. Journal of Ecological Engineering 2019:20(5):249–254. https://doi.org/10.12911/22998993/105543">https://doi.org/10.12911/22998993/105543
  21. Bilen K., Erdoğan İ. Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Solar Energy 2023:262:111829. https://doi.org/10.1016/j.solener.2023.111829">https://doi.org/10.1016/j.solener.2023.111829
  22. Satpute J. B., Rajan J. A. Recent advancement in cooling technologies of solar photovoltaic (PV) system. FME Transactions 2018:46(4):575–584. https://doi.org/10.5937/fmet1804575S">https://doi.org/10.5937/fmet1804575S
  23. Mariam E., Ramasubramanian B., Reddy V. S., Dalapati G. K., Ghosh S., PA T. S., Chakrabortty S., Motapothula M. R., Kumar A., Ramakrishna S., Krishnamurthy S. Emerging trends in cooling technologies for photovoltaic systems. Renewable and Sustainable Energy Reviews 2024:192:114203. https://doi.org/10.1016/j.rser.2023.114203">https://doi.org/10.1016/j.rser.2023.114203
  24. Choi S. M., Park C-D., Cho S-H., Lim B-J. Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis. Energy 2022:256:124649. https://doi.org/10.1016/j.energy.2022.124649">https://doi.org/10.1016/j.energy.2022.124649
  25. Demirdelen T., Alici H., Esenboğa B., Güldürek M. Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate. Energies 2023:16(10):4197. https://doi.org/10.3390/en16104197">https://doi.org/10.3390/en16104197
  26. Sun L., Bai J., Pachauri R. K., Wang S. A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules. Renewable Energy 2024:221:119762. https://doi.org/10.1016/j.renene.2023.119762">https://doi.org/10.1016/j.renene.2023.119762
  27. Kolhe M. Techno-Economic Optimum Sizing of a Stand-Alone Solar Photovoltaic System. IEEE Transactions on Energy Conversion 2009:24(2):511–519. https://doi.org/10.1109/TEC.2008.2001455">https://doi.org/10.1109/TEC.2008.2001455
  28. Kumar N. M., Vishnupriyan J., Sundaramoorthi P. Techno-economic optimization and real-time comparison of sun tracking photovoltaic system for rural healthcare building. Journal of Renewable and Sustainable Energy 2019:11(1):015301. https://doi.org/10.1063/1.5065366">https://doi.org/10.1063/1.5065366
  29. Ghabuzyan L., Pan K., Fatahi A., Kuo J., Baldus-Jeursen C. Thermal Effects on Photovoltaic Array Performance: Experimentation, Modeling, and Simulation. Applied Sciences 2021:11(4):1460. https://doi.org/10.3390/app11041460">https://doi.org/10.3390/app11041460
  30. Glick A., Smith S. E., Ali N., Bossuyt J., Recktenwald G., Calaf M., Cal R. B. Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms. Solar Energy 2020:207:173–182. https://doi.org/10.1016/j.solener.2020.05.061">https://doi.org/10.1016/j.solener.2020.05.061
  31. Lacombe F. Vérification et validation d’une loi de paroi consistante du modèle de turbulence K-w SST, 2017.
  32. Al-Bana A. S., Zahran S., Ahmed M. M., Al-Sayaad K. M. Performance Analysis and Validation of Different Meshing Techniques Used for Computational Fluid Dynamics Simulation. 2022 International Telecommunications Conference (ITC-Egypt) 2022:1–5. https://doi.org/10.1109/ITC-Egypt55520.2022.9855763">https://doi.org/10.1109/ITC-Egypt55520.2022.9855763
  33. Heinrich R. Implementation and Usage of Structured Algorithms within an Unstructured CFD-Code. New Results in Numerical and Experimental Fluid Mechanics V 2006:430–437. https://doi.org/10.1007/978-3-540-33287-9_53">https://doi.org/10.1007/978-3-540-33287-9_53
  34. Schlipf M., Tismer A., Riedelbauch S. On the application of hybrid meshes in hydraulic machinery CFD simulations. IOP Conference Series: Earth and Environmental Science 2016:49(6):062013. https://doi.org/10.1007/978-3-540-33287-9_53">https://doi.org/10.1007/978-3-540-33287-9_53
  35. Kowarsch U., Hofmann T., Keßler M., Krämer E. Adding Hybrid Mesh Capability to a CFD-Solver for Helicopter Flows. High Performance Computing in Science and Engineering ´16 2016:461–471. https://doi.org/10.1007/978-3-319-47066-5_31">https://doi.org/10.1007/978-3-319-47066-5_31
  36. NASA Prediction of Worldwide Energy Resources (POWER) Data Access Viewer [Online]. [Accessed 15.05.2025]. Available: https://power.larc.nasa.gov/data-access-viewer/
  37. Tominaga Y., Blocken B. Wind tunnel experiments on cross-ventilation flow of a generic building with contaminant dispersion in unsheltered and sheltered conditions. Building and Environment 2015:92:452–461. https://doi.org/10.1016/j.buildenv.2015.05.026">https://doi.org/10.1016/j.buildenv.2015.05.026
DOI: https://doi.org/10.2478/rtuect-2025-0029 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 433 - 446
Submitted on: Mar 13, 2025
Accepted on: Jun 16, 2025
Published on: Aug 16, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Kudzanayi Chiteka, Christopher Enweremadu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.