References
- Silvestre G., Fernández B., Bonmatí A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conversion and Management 2015:101:255–262. https://doi.org/10.1016/j.enconman.2015.05.033
- E. B. Association, EBA Statistical Report, The European Biogas Association, 2017. [Online]. [Accessed 15.02.2025]. Available: http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-soon/
- Gao J., Li J., Wachemo A. C., Yuan H., Zuo X., Li X. Mass conversion pathway during anaerobic digestion of wheat straw. RSC Advances 2020:46:27720–27727. https://doi.org/10.1039/D0RA02441D
- Malhotra M., Aboudi K., Pisharody L., Singh A., Banu J. R., Bhatia S. K., Varjani S., Kumar S., González-Fernández C., Kumar S., Singh R., Tyagi V. K. Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives. Renewable and Sustainable Energy Reviews 2022:166:112642. https://doi.org/10.1016/j.rser.2022.112642
- Langone M., Basso D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. International Journal of Environmenatal Research and Public Health 2020:17(8):1–31. https://doi.org/10.3390/ijerph17186618
- Ali A. M., Nesse A. S., Eich-Greatorex S., Sogn T. A., Aanrud S. G., Aasen Bunæs J. A., Lyche J. L., Kallenborn R. Organic contaminants of emerging concern in Norwegian digestates from biogas production. Environmental Science: Process & Impacts 2019:9:1498–1508. https://doi.org/10.1039/C9EM00175A
- Petrovič A., Vohl S., Cenčič Predikaka T., Bedoić R., Simonič M., Ban I., Čuček L. Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar. Sustainability 2021:13(17):9642. https://doi.org/10.3390/su13179642
- Freda C., Nanna F., Villone A., Barisano D., Brandani S., Cornacchia G. Air gasification of digestate and its cogasification with residual biomass in a pilot scale rotary kiln. International Journal of Energy and Environmental Engineering 2019:10:335–346. https://doi.org/10.1007/s40095-019-0310-3
- Vigants E., Vigants G., Veidenbergs I., Lauka D., Klavina K., Blumberga D. Analysis of Energy Consumption for Biomass Drying Process. Environment. Technology. Resources. Proceedings of the 10th International Scientific and Practical Conference 2015:2:317–322. https://doi.org/10.17770/etr2015vol2.625
- Zhang Y., Cao B., Ren R., Shi Y., Xiong J., Zhang W., Wang D. Correlation and mechanism of extracellular polymeric substances (EPS) on the effect of sewage sludge electro-dewatering. Science of The Total Environment 2021:801:149753. https://doi.org/10.1016/j.scitotenv.2021.149753
- Christensen M. L., Keiding K., Nielsen P. H., Jørgensen M. K. Dewatering in biological wastewater treatment: A review. Water Research 2015:82:14–24. https://doi.org/10.1016/j.watres.2015.04.019
- Gahlot P., Tyagi V. K., Balasundaram G., Atabani A. E., Suthar S., Kazmi A. A., Štěpanec L., Juchelková D., Kumar A. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environmental Research 2022:214(2):113857. https://doi.org/10.1016/j.envres.2022.113856
- Malhotra M., Garg A. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions. Journal of Environmental Management 2019:238:72–83. https://doi.org/10.1016/j.jenvman.2019.02.094
- Mumtaz H., Sobek S., Werle S., Sajdak M., Muzyka R. Hydrothermal treatment of plastic waste within a circular economy perspective, Sustainable Chemistry and Pharmacy 2023:32:100991. https://doi.org/10.1016/j.scp.2023.100991
- Wang L. F., Qian C., Jiang J. K., Ye X. D., Yu H. Q. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environmental Pollution 2017:231(2):1388–1392. https://doi.org/10.1016/j.envpol.2017.08.119
- Xiao H., Guo Y., Liang X., Qi C. One-step synthesis of novel biacidic carbon via hydrothermal carbonization. Journal Solid State Chemistry 2010:183(7):1721–1725. https://doi.org/10.1016/j.jssc.2010.05.020
- Malhotra M., Garg A. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Management 2020:117:114–123. https://doi.org/10.1016/j.wasman.2020.07.026
- Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120–125. https://doi.org/10.1016/j.fuel.2014.04.030
- Tasca A. L., Stefanelli E., Raspolli Galletti A. M., Gori R., Mannarino G., Vitolo S., Puccini M. Hydrothermal Carbonization of Sewage Sludge: Analysis of Process Severity and Solid Content. Chemical Engineering & Technology 2020:43(12):2382–2392. https://doi.org/10.1002/ceat.202000095
- Akiya N., Savage P. E. Roles of water for chemical reactions in high-temperature water. Chemical Reviews 2002:102(8):2725–2750. https://doi.org/10.1021/cr000668w
- Gupta D., Mahajani S. M., Garg A. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresource Technology 2019:285:121329. https://doi.org/10.1016/j.biortech.2019.121329
- Olszewski M. P., Arauzo P. J., Wądrzyk M., Kruse A. Py-GC-MS of hydrochars produced from brewer’s spent grains. Journal of Analytical and Applied Pyrolysis 2019:140:255–263. https://doi.org/10.1016/j.jaap.2019.04.002
- Czerwińska K., Marszałek A., Kudlek E., Śliz M., Dudziak M., Wilk M. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge. Science of Total Environment 2023:885:163858. https://doi.org/10.1016/j.scitotenv.2023.163858
- García M., Urrea J. L., Collado S., Oulego P., Díaz M. Protein recovery from solubilized sludge by hydrothermal treatments. Waste Management 2017:67:278–287. https://doi.org/10.1016/j.wasman.2017.05.051
- Malhotra M., Garg A. Proteins Recovery from Hydrothermally Treated Diluted and Centrifuged Sewage Sludge Samples. Journal of Hazardous, Toxic, and Radioactive Waste 2018:24(4):1–8. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000542
- Gupta D., Mahajani S. M., Garg A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Science of Total Environment 2020:749:142294. https://doi.org/10.1016/j.scitotenv.2020.142294
- Malhotra M., Garg A. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge. Frontiers of Environmental Science & Engineering 2021:15:13. https://doi.org/10.1007/s11783-020-1305-2
- McGaughy K., Toufiq Reza M. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conversion and Biorefinery 2018:8:283–292. https://doi.org/10.1007/s13399-017-0276-4
- Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120-125. https://doi.org/10.1016/j.fuel.2014.04.030
- Lin Y., Ge Y., Xiao H., He Q., Wang W., Chen B. Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes. Energy 2020:210:118606. https://doi.org/10.1016/j.energy.2020.118606
- C Deng., Kang X., Lin R., Murphy J. D. Microwave assisted low-temperature hydrothermal treatment of solid anaerobic digestate for optimising hydrochar and energy recovery. Chemical Engineering Journal 2020:395:124999. https://doi.org/10.1016/j.cej.2020.124999
- Aragón-Briceño C., Ross A. B., Camargo-Valero M. A. Evaluation and comparison of product yields and biomethane potential in sewage digestate following hydrothermal treatment. Applied Energy 2017:208:1357–1369. https://doi.org/10.1016/j.apenergy.2017.09.019
- S Sobek., Tran Q. K., Junga R., Werle S. Hydrothermal carbonization of the waste straw: A study of the biomass transient heating behavior and solid products combustion kinetics. Fuel 2022:314:122725. https://doi.org/10.1016/j.fuel.2021.122725
- Mlonka-Mędrala A., Sieradzka M., Magdziarz A. Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction. Fuel 2022:324:124435. (2022). https://doi.org/10.1016/j.fuel.2022.124435
- Cao Z., Jung D., Olszewski M. P., Arauzo P. J., Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management 2019:100:138–150. https://doi.org/10.1016/j.wasman.2019.09.009
- Zhai Y., Peng C., Xu B., Wang T., Li C., Zeng G., Zhu Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017:127:167–174. https://doi.org/10.1016/j.energy.2017.03.116
- Peng C., Zhai Y., Zhu Y., Xu B., Wang T., Li C., Zeng G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 2016:176:110–118. https://doi.org/10.1016/j.fuel.2016.02.068
- Silva R. D. V. K., Lei Z., Shimizu K., Zhang Z. Hydrothermal treatment of sewage sludge to produce solid biofuel: Focus on fuel characteristics. Bioresource Technology Reports 2020:11:100453. https://doi.org/10.1016/j.biteb.2020.100453
- APHA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association Washington, 2012.
- Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions that may Alter Hydraulic Conductivity. https://store.astm.org/d7100-11r20.html
- Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM. https://doi.org/10.1520/D3175-07
- Parikh J., Channiwala S. A., Ghosal G. K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 2007:86(12–13):1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029
- Ahmed M., G Andreottola., Elagroudy S., Negm M. S., Fiori L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and biomethane production. Journal of Environmental Management 2021:281:111910. https://doi.org/10.1016/j.jenvman.2020.111910
- Islam M. T., Chambers C., Klinger J. L., Reza M. T. Blending hydrochar improves hydrophobic properties of corn stover pellets. Biomass Conversion and Biorefinery 2022. https://doi.org/10.1007/s13399-022-02521-1
- Bach Q. V., Tran K. Q., Skreiberg Ø. Hydrothermal pretreatment of fresh forest residues: Effects of feedstock predrying. Biomass and Bioenergy 2016:85:76–83. https://doi.org/10.1016/j.biombioe.2015.11.019
- Zhang J.-h., Lin Q.-m., Zhao X.-r. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. Journal of Integrative Agriculture 2014:13(3):471–482. https://doi.org/10.1016/S2095-3119(13)60702-9
- Skinner S. J., Studer L. J., Dixon D. R., Hillis P., Rees C. A., Wall R. C., Cavalida R. G., Usher S. P., Stickland A. D., Scales P. J. Quantification of wastewater sludge dewatering. Water Research 2015:82:2–13. https://doi.org/10.1016/j.watres.2015.04.045
- Sapkaite I., Barrado E., Fdz-Polanco F., Pérez-Elvira S. I. Optimization of a thermal hydrolysis process for sludge pre-treatment. Journal of Environmental Management 2017:192:25–30. https://doi.org/10.1016/j.jenvman.2017.01.043