Silvestre G., Fernández B., Bonmatí A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conversion and Management 2015:101:255–262. https://doi.org/10.1016/j.enconman.2015.05.033">https://doi.org/10.1016/j.enconman.2015.05.033
E. B. Association, EBA Statistical Report, The European Biogas Association, 2017. [Online]. [Accessed 15.02.2025]. Available: http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-soon/
Gao J., Li J., Wachemo A. C., Yuan H., Zuo X., Li X. Mass conversion pathway during anaerobic digestion of wheat straw. RSC Advances 2020:46:27720–27727. https://doi.org/10.1039/D0RA02441D">https://doi.org/10.1039/D0RA02441D
Malhotra M., Aboudi K., Pisharody L., Singh A., Banu J. R., Bhatia S. K., Varjani S., Kumar S., González-Fernández C., Kumar S., Singh R., Tyagi V. K. Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives. Renewable and Sustainable Energy Reviews 2022:166:112642. https://doi.org/10.1016/j.rser.2022.112642">https://doi.org/10.1016/j.rser.2022.112642
Langone M., Basso D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. International Journal of Environmenatal Research and Public Health 2020:17(8):1–31. https://doi.org/10.3390/ijerph17186618">https://doi.org/10.3390/ijerph17186618
Ali A. M., Nesse A. S., Eich-Greatorex S., Sogn T. A., Aanrud S. G., Aasen Bunæs J. A., Lyche J. L., Kallenborn R. Organic contaminants of emerging concern in Norwegian digestates from biogas production. Environmental Science: Process & Impacts 2019:9:1498–1508. https://doi.org/10.1039/C9EM00175A">https://doi.org/10.1039/C9EM00175A
Petrovič A., Vohl S., Cenčič Predikaka T., Bedoić R., Simonič M., Ban I., Čuček L. Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar. Sustainability 2021:13(17):9642. https://doi.org/10.3390/su13179642">https://doi.org/10.3390/su13179642
Freda C., Nanna F., Villone A., Barisano D., Brandani S., Cornacchia G. Air gasification of digestate and its cogasification with residual biomass in a pilot scale rotary kiln. International Journal of Energy and Environmental Engineering 2019:10:335–346. https://doi.org/10.1007/s40095-019-0310-3">https://doi.org/10.1007/s40095-019-0310-3
Vigants E., Vigants G., Veidenbergs I., Lauka D., Klavina K., Blumberga D. Analysis of Energy Consumption for Biomass Drying Process. Environment. Technology. Resources. Proceedings of the 10th International Scientific and Practical Conference 2015:2:317–322. https://doi.org/10.17770/etr2015vol2.625">https://doi.org/10.17770/etr2015vol2.625
Zhang Y., Cao B., Ren R., Shi Y., Xiong J., Zhang W., Wang D. Correlation and mechanism of extracellular polymeric substances (EPS) on the effect of sewage sludge electro-dewatering. Science of The Total Environment 2021:801:149753. https://doi.org/10.1016/j.scitotenv.2021.149753">https://doi.org/10.1016/j.scitotenv.2021.149753
Christensen M. L., Keiding K., Nielsen P. H., Jørgensen M. K. Dewatering in biological wastewater treatment: A review. Water Research 2015:82:14–24. https://doi.org/10.1016/j.watres.2015.04.019">https://doi.org/10.1016/j.watres.2015.04.019
Gahlot P., Tyagi V. K., Balasundaram G., Atabani A. E., Suthar S., Kazmi A. A., Štěpanec L., Juchelková D., Kumar A. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environmental Research 2022:214(2):113857. https://doi.org/10.1016/j.envres.2022.113856">https://doi.org/10.1016/j.envres.2022.113856
Malhotra M., Garg A. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions. Journal of Environmental Management 2019:238:72–83. https://doi.org/10.1016/j.jenvman.2019.02.094">https://doi.org/10.1016/j.jenvman.2019.02.094
Mumtaz H., Sobek S., Werle S., Sajdak M., Muzyka R. Hydrothermal treatment of plastic waste within a circular economy perspective, Sustainable Chemistry and Pharmacy 2023:32:100991. https://doi.org/10.1016/j.scp.2023.100991">https://doi.org/10.1016/j.scp.2023.100991
Wang L. F., Qian C., Jiang J. K., Ye X. D., Yu H. Q. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environmental Pollution 2017:231(2):1388–1392. https://doi.org/10.1016/j.envpol.2017.08.119">https://doi.org/10.1016/j.envpol.2017.08.119
Malhotra M., Garg A. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Management 2020:117:114–123. https://doi.org/10.1016/j.wasman.2020.07.026">https://doi.org/10.1016/j.wasman.2020.07.026
Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120–125. https://doi.org/10.1016/j.fuel.2014.04.030">https://doi.org/10.1016/j.fuel.2014.04.030
Tasca A. L., Stefanelli E., Raspolli Galletti A. M., Gori R., Mannarino G., Vitolo S., Puccini M. Hydrothermal Carbonization of Sewage Sludge: Analysis of Process Severity and Solid Content. Chemical Engineering & Technology 2020:43(12):2382–2392. https://doi.org/10.1002/ceat.202000095">https://doi.org/10.1002/ceat.202000095
Akiya N., Savage P. E. Roles of water for chemical reactions in high-temperature water. Chemical Reviews 2002:102(8):2725–2750. https://doi.org/10.1021/cr000668w">https://doi.org/10.1021/cr000668w
Gupta D., Mahajani S. M., Garg A. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresource Technology 2019:285:121329. https://doi.org/10.1016/j.biortech.2019.121329">https://doi.org/10.1016/j.biortech.2019.121329
Olszewski M. P., Arauzo P. J., Wądrzyk M., Kruse A. Py-GC-MS of hydrochars produced from brewer’s spent grains. Journal of Analytical and Applied Pyrolysis 2019:140:255–263. https://doi.org/10.1016/j.jaap.2019.04.002">https://doi.org/10.1016/j.jaap.2019.04.002
Czerwińska K., Marszałek A., Kudlek E., Śliz M., Dudziak M., Wilk M. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge. Science of Total Environment 2023:885:163858. https://doi.org/10.1016/j.scitotenv.2023.163858">https://doi.org/10.1016/j.scitotenv.2023.163858
García M., Urrea J. L., Collado S., Oulego P., Díaz M. Protein recovery from solubilized sludge by hydrothermal treatments. Waste Management 2017:67:278–287. https://doi.org/10.1016/j.wasman.2017.05.051">https://doi.org/10.1016/j.wasman.2017.05.051
Malhotra M., Garg A. Proteins Recovery from Hydrothermally Treated Diluted and Centrifuged Sewage Sludge Samples. Journal of Hazardous, Toxic, and Radioactive Waste 2018:24(4):1–8. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000542">https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000542
Gupta D., Mahajani S. M., Garg A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Science of Total Environment 2020:749:142294. https://doi.org/10.1016/j.scitotenv.2020.142294">https://doi.org/10.1016/j.scitotenv.2020.142294
Malhotra M., Garg A. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge. Frontiers of Environmental Science & Engineering 2021:15:13. https://doi.org/10.1007/s11783-020-1305-2">https://doi.org/10.1007/s11783-020-1305-2
McGaughy K., Toufiq Reza M. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conversion and Biorefinery 2018:8:283–292. https://doi.org/10.1007/s13399-017-0276-4">https://doi.org/10.1007/s13399-017-0276-4
Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120-125. https://doi.org/10.1016/j.fuel.2014.04.030">https://doi.org/10.1016/j.fuel.2014.04.030
Lin Y., Ge Y., Xiao H., He Q., Wang W., Chen B. Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes. Energy 2020:210:118606. https://doi.org/10.1016/j.energy.2020.118606">https://doi.org/10.1016/j.energy.2020.118606
C Deng., Kang X., Lin R., Murphy J. D. Microwave assisted low-temperature hydrothermal treatment of solid anaerobic digestate for optimising hydrochar and energy recovery. Chemical Engineering Journal 2020:395:124999. https://doi.org/10.1016/j.cej.2020.124999">https://doi.org/10.1016/j.cej.2020.124999
Aragón-Briceño C., Ross A. B., Camargo-Valero M. A. Evaluation and comparison of product yields and biomethane potential in sewage digestate following hydrothermal treatment. Applied Energy 2017:208:1357–1369. https://doi.org/10.1016/j.apenergy.2017.09.019">https://doi.org/10.1016/j.apenergy.2017.09.019
S Sobek., Tran Q. K., Junga R., Werle S. Hydrothermal carbonization of the waste straw: A study of the biomass transient heating behavior and solid products combustion kinetics. Fuel 2022:314:122725. https://doi.org/10.1016/j.fuel.2021.122725">https://doi.org/10.1016/j.fuel.2021.122725
Mlonka-Mędrala A., Sieradzka M., Magdziarz A. Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction. Fuel 2022:324:124435. (2022). https://doi.org/10.1016/j.fuel.2022.124435">https://doi.org/10.1016/j.fuel.2022.124435
Cao Z., Jung D., Olszewski M. P., Arauzo P. J., Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management 2019:100:138–150. https://doi.org/10.1016/j.wasman.2019.09.009">https://doi.org/10.1016/j.wasman.2019.09.009
Zhai Y., Peng C., Xu B., Wang T., Li C., Zeng G., Zhu Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017:127:167–174. https://doi.org/10.1016/j.energy.2017.03.116">https://doi.org/10.1016/j.energy.2017.03.116
Peng C., Zhai Y., Zhu Y., Xu B., Wang T., Li C., Zeng G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 2016:176:110–118. https://doi.org/10.1016/j.fuel.2016.02.068">https://doi.org/10.1016/j.fuel.2016.02.068
Silva R. D. V. K., Lei Z., Shimizu K., Zhang Z. Hydrothermal treatment of sewage sludge to produce solid biofuel: Focus on fuel characteristics. Bioresource Technology Reports 2020:11:100453. https://doi.org/10.1016/j.biteb.2020.100453">https://doi.org/10.1016/j.biteb.2020.100453
Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions that may Alter Hydraulic Conductivity. https://store.astm.org/d7100-11r20.html
Parikh J., Channiwala S. A., Ghosal G. K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 2007:86(12–13):1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029">https://doi.org/10.1016/j.fuel.2006.12.029
Ahmed M., G Andreottola., Elagroudy S., Negm M. S., Fiori L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and biomethane production. Journal of Environmental Management 2021:281:111910. https://doi.org/10.1016/j.jenvman.2020.111910">https://doi.org/10.1016/j.jenvman.2020.111910
Islam M. T., Chambers C., Klinger J. L., Reza M. T. Blending hydrochar improves hydrophobic properties of corn stover pellets. Biomass Conversion and Biorefinery 2022. https://doi.org/10.1007/s13399-022-02521-1">https://doi.org/10.1007/s13399-022-02521-1
Zhang J.-h., Lin Q.-m., Zhao X.-r. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. Journal of Integrative Agriculture 2014:13(3):471–482. https://doi.org/10.1016/S2095-3119(13)60702-9">https://doi.org/10.1016/S2095-3119(13)60702-9
Skinner S. J., Studer L. J., Dixon D. R., Hillis P., Rees C. A., Wall R. C., Cavalida R. G., Usher S. P., Stickland A. D., Scales P. J. Quantification of wastewater sludge dewatering. Water Research 2015:82:2–13. https://doi.org/10.1016/j.watres.2015.04.045">https://doi.org/10.1016/j.watres.2015.04.045
Sapkaite I., Barrado E., Fdz-Polanco F., Pérez-Elvira S. I. Optimization of a thermal hydrolysis process for sludge pre-treatment. Journal of Environmental Management 2017:192:25–30. https://doi.org/10.1016/j.jenvman.2017.01.043">https://doi.org/10.1016/j.jenvman.2017.01.043