Have a personal or library account? Click to login
Hydrothermal Carbonization of Sludge – Optimization for Dewaterability Cover

Hydrothermal Carbonization of Sludge – Optimization for Dewaterability

Open Access
|Aug 2025

References

  1. Silvestre G., Fernández B., Bonmatí A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conversion and Management 2015:101:255–262. https://doi.org/10.1016/j.enconman.2015.05.033">https://doi.org/10.1016/j.enconman.2015.05.033
  2. E. B. Association, EBA Statistical Report, The European Biogas Association, 2017. [Online]. [Accessed 15.02.2025]. Available: http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-soon/
  3. Gao J., Li J., Wachemo A. C., Yuan H., Zuo X., Li X. Mass conversion pathway during anaerobic digestion of wheat straw. RSC Advances 2020:46:27720–27727. https://doi.org/10.1039/D0RA02441D">https://doi.org/10.1039/D0RA02441D
  4. Malhotra M., Aboudi K., Pisharody L., Singh A., Banu J. R., Bhatia S. K., Varjani S., Kumar S., González-Fernández C., Kumar S., Singh R., Tyagi V. K. Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives. Renewable and Sustainable Energy Reviews 2022:166:112642. https://doi.org/10.1016/j.rser.2022.112642">https://doi.org/10.1016/j.rser.2022.112642
  5. Langone M., Basso D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. International Journal of Environmenatal Research and Public Health 2020:17(8):1–31. https://doi.org/10.3390/ijerph17186618">https://doi.org/10.3390/ijerph17186618
  6. Ali A. M., Nesse A. S., Eich-Greatorex S., Sogn T. A., Aanrud S. G., Aasen Bunæs J. A., Lyche J. L., Kallenborn R. Organic contaminants of emerging concern in Norwegian digestates from biogas production. Environmental Science: Process & Impacts 2019:9:1498–1508. https://doi.org/10.1039/C9EM00175A">https://doi.org/10.1039/C9EM00175A
  7. Petrovič A., Vohl S., Cenčič Predikaka T., Bedoić R., Simonič M., Ban I., Čuček L. Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar. Sustainability 2021:13(17):9642. https://doi.org/10.3390/su13179642">https://doi.org/10.3390/su13179642
  8. Freda C., Nanna F., Villone A., Barisano D., Brandani S., Cornacchia G. Air gasification of digestate and its cogasification with residual biomass in a pilot scale rotary kiln. International Journal of Energy and Environmental Engineering 2019:10:335–346. https://doi.org/10.1007/s40095-019-0310-3">https://doi.org/10.1007/s40095-019-0310-3
  9. Vigants E., Vigants G., Veidenbergs I., Lauka D., Klavina K., Blumberga D. Analysis of Energy Consumption for Biomass Drying Process. Environment. Technology. Resources. Proceedings of the 10th International Scientific and Practical Conference 2015:2:317–322. https://doi.org/10.17770/etr2015vol2.625">https://doi.org/10.17770/etr2015vol2.625
  10. Zhang Y., Cao B., Ren R., Shi Y., Xiong J., Zhang W., Wang D. Correlation and mechanism of extracellular polymeric substances (EPS) on the effect of sewage sludge electro-dewatering. Science of The Total Environment 2021:801:149753. https://doi.org/10.1016/j.scitotenv.2021.149753">https://doi.org/10.1016/j.scitotenv.2021.149753
  11. Christensen M. L., Keiding K., Nielsen P. H., Jørgensen M. K. Dewatering in biological wastewater treatment: A review. Water Research 2015:82:14–24. https://doi.org/10.1016/j.watres.2015.04.019">https://doi.org/10.1016/j.watres.2015.04.019
  12. Gahlot P., Tyagi V. K., Balasundaram G., Atabani A. E., Suthar S., Kazmi A. A., Štěpanec L., Juchelková D., Kumar A. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environmental Research 2022:214(2):113857. https://doi.org/10.1016/j.envres.2022.113856">https://doi.org/10.1016/j.envres.2022.113856
  13. Malhotra M., Garg A. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions. Journal of Environmental Management 2019:238:72–83. https://doi.org/10.1016/j.jenvman.2019.02.094">https://doi.org/10.1016/j.jenvman.2019.02.094
  14. Mumtaz H., Sobek S., Werle S., Sajdak M., Muzyka R. Hydrothermal treatment of plastic waste within a circular economy perspective, Sustainable Chemistry and Pharmacy 2023:32:100991. https://doi.org/10.1016/j.scp.2023.100991">https://doi.org/10.1016/j.scp.2023.100991
  15. Wang L. F., Qian C., Jiang J. K., Ye X. D., Yu H. Q. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environmental Pollution 2017:231(2):1388–1392. https://doi.org/10.1016/j.envpol.2017.08.119">https://doi.org/10.1016/j.envpol.2017.08.119
  16. Xiao H., Guo Y., Liang X., Qi C. One-step synthesis of novel biacidic carbon via hydrothermal carbonization. Journal Solid State Chemistry 2010:183(7):1721–1725. https://doi.org/10.1016/j.jssc.2010.05.020">https://doi.org/10.1016/j.jssc.2010.05.020
  17. Malhotra M., Garg A. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Management 2020:117:114–123. https://doi.org/10.1016/j.wasman.2020.07.026">https://doi.org/10.1016/j.wasman.2020.07.026
  18. Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120–125. https://doi.org/10.1016/j.fuel.2014.04.030">https://doi.org/10.1016/j.fuel.2014.04.030
  19. Tasca A. L., Stefanelli E., Raspolli Galletti A. M., Gori R., Mannarino G., Vitolo S., Puccini M. Hydrothermal Carbonization of Sewage Sludge: Analysis of Process Severity and Solid Content. Chemical Engineering & Technology 2020:43(12):2382–2392. https://doi.org/10.1002/ceat.202000095">https://doi.org/10.1002/ceat.202000095
  20. Akiya N., Savage P. E. Roles of water for chemical reactions in high-temperature water. Chemical Reviews 2002:102(8):2725–2750. https://doi.org/10.1021/cr000668w">https://doi.org/10.1021/cr000668w
  21. Gupta D., Mahajani S. M., Garg A. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresource Technology 2019:285:121329. https://doi.org/10.1016/j.biortech.2019.121329">https://doi.org/10.1016/j.biortech.2019.121329
  22. Olszewski M. P., Arauzo P. J., Wądrzyk M., Kruse A. Py-GC-MS of hydrochars produced from brewer’s spent grains. Journal of Analytical and Applied Pyrolysis 2019:140:255–263. https://doi.org/10.1016/j.jaap.2019.04.002">https://doi.org/10.1016/j.jaap.2019.04.002
  23. Czerwińska K., Marszałek A., Kudlek E., Śliz M., Dudziak M., Wilk M. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge. Science of Total Environment 2023:885:163858. https://doi.org/10.1016/j.scitotenv.2023.163858">https://doi.org/10.1016/j.scitotenv.2023.163858
  24. García M., Urrea J. L., Collado S., Oulego P., Díaz M. Protein recovery from solubilized sludge by hydrothermal treatments. Waste Management 2017:67:278–287. https://doi.org/10.1016/j.wasman.2017.05.051">https://doi.org/10.1016/j.wasman.2017.05.051
  25. Malhotra M., Garg A. Proteins Recovery from Hydrothermally Treated Diluted and Centrifuged Sewage Sludge Samples. Journal of Hazardous, Toxic, and Radioactive Waste 2018:24(4):1–8. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000542">https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000542
  26. Gupta D., Mahajani S. M., Garg A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Science of Total Environment 2020:749:142294. https://doi.org/10.1016/j.scitotenv.2020.142294">https://doi.org/10.1016/j.scitotenv.2020.142294
  27. Malhotra M., Garg A. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge. Frontiers of Environmental Science & Engineering 2021:15:13. https://doi.org/10.1007/s11783-020-1305-2">https://doi.org/10.1007/s11783-020-1305-2
  28. McGaughy K., Toufiq Reza M. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conversion and Biorefinery 2018:8:283–292. https://doi.org/10.1007/s13399-017-0276-4">https://doi.org/10.1007/s13399-017-0276-4
  29. Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120-125. https://doi.org/10.1016/j.fuel.2014.04.030">https://doi.org/10.1016/j.fuel.2014.04.030
  30. Lin Y., Ge Y., Xiao H., He Q., Wang W., Chen B. Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes. Energy 2020:210:118606. https://doi.org/10.1016/j.energy.2020.118606">https://doi.org/10.1016/j.energy.2020.118606
  31. C Deng., Kang X., Lin R., Murphy J. D. Microwave assisted low-temperature hydrothermal treatment of solid anaerobic digestate for optimising hydrochar and energy recovery. Chemical Engineering Journal 2020:395:124999. https://doi.org/10.1016/j.cej.2020.124999">https://doi.org/10.1016/j.cej.2020.124999
  32. Aragón-Briceño C., Ross A. B., Camargo-Valero M. A. Evaluation and comparison of product yields and biomethane potential in sewage digestate following hydrothermal treatment. Applied Energy 2017:208:1357–1369. https://doi.org/10.1016/j.apenergy.2017.09.019">https://doi.org/10.1016/j.apenergy.2017.09.019
  33. S Sobek., Tran Q. K., Junga R., Werle S. Hydrothermal carbonization of the waste straw: A study of the biomass transient heating behavior and solid products combustion kinetics. Fuel 2022:314:122725. https://doi.org/10.1016/j.fuel.2021.122725">https://doi.org/10.1016/j.fuel.2021.122725
  34. Mlonka-Mędrala A., Sieradzka M., Magdziarz A. Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction. Fuel 2022:324:124435. (2022). https://doi.org/10.1016/j.fuel.2022.124435">https://doi.org/10.1016/j.fuel.2022.124435
  35. Cao Z., Jung D., Olszewski M. P., Arauzo P. J., Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management 2019:100:138–150. https://doi.org/10.1016/j.wasman.2019.09.009">https://doi.org/10.1016/j.wasman.2019.09.009
  36. Zhai Y., Peng C., Xu B., Wang T., Li C., Zeng G., Zhu Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017:127:167–174. https://doi.org/10.1016/j.energy.2017.03.116">https://doi.org/10.1016/j.energy.2017.03.116
  37. Peng C., Zhai Y., Zhu Y., Xu B., Wang T., Li C., Zeng G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 2016:176:110–118. https://doi.org/10.1016/j.fuel.2016.02.068">https://doi.org/10.1016/j.fuel.2016.02.068
  38. Silva R. D. V. K., Lei Z., Shimizu K., Zhang Z. Hydrothermal treatment of sewage sludge to produce solid biofuel: Focus on fuel characteristics. Bioresource Technology Reports 2020:11:100453. https://doi.org/10.1016/j.biteb.2020.100453">https://doi.org/10.1016/j.biteb.2020.100453
  39. APHA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association Washington, 2012.
  40. Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions that may Alter Hydraulic Conductivity. https://store.astm.org/d7100-11r20.html
  41. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM. https://doi.org/10.1520/D3175-07">https://doi.org/10.1520/D3175-07
  42. Parikh J., Channiwala S. A., Ghosal G. K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 2007:86(12–13):1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029">https://doi.org/10.1016/j.fuel.2006.12.029
  43. Ahmed M., G Andreottola., Elagroudy S., Negm M. S., Fiori L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and biomethane production. Journal of Environmental Management 2021:281:111910. https://doi.org/10.1016/j.jenvman.2020.111910">https://doi.org/10.1016/j.jenvman.2020.111910
  44. Islam M. T., Chambers C., Klinger J. L., Reza M. T. Blending hydrochar improves hydrophobic properties of corn stover pellets. Biomass Conversion and Biorefinery 2022. https://doi.org/10.1007/s13399-022-02521-1">https://doi.org/10.1007/s13399-022-02521-1
  45. Bach Q. V., Tran K. Q., Skreiberg Ø. Hydrothermal pretreatment of fresh forest residues: Effects of feedstock predrying. Biomass and Bioenergy 2016:85:76–83. https://doi.org/10.1016/j.biombioe.2015.11.019">https://doi.org/10.1016/j.biombioe.2015.11.019
  46. Zhang J.-h., Lin Q.-m., Zhao X.-r. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. Journal of Integrative Agriculture 2014:13(3):471–482. https://doi.org/10.1016/S2095-3119(13)60702-9">https://doi.org/10.1016/S2095-3119(13)60702-9
  47. Skinner S. J., Studer L. J., Dixon D. R., Hillis P., Rees C. A., Wall R. C., Cavalida R. G., Usher S. P., Stickland A. D., Scales P. J. Quantification of wastewater sludge dewatering. Water Research 2015:82:2–13. https://doi.org/10.1016/j.watres.2015.04.045">https://doi.org/10.1016/j.watres.2015.04.045
  48. Sapkaite I., Barrado E., Fdz-Polanco F., Pérez-Elvira S. I. Optimization of a thermal hydrolysis process for sludge pre-treatment. Journal of Environmental Management 2017:192:25–30. https://doi.org/10.1016/j.jenvman.2017.01.043">https://doi.org/10.1016/j.jenvman.2017.01.043
DOI: https://doi.org/10.2478/rtuect-2025-0027 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 405 - 417
Submitted on: Apr 11, 2025
Accepted on: Jun 16, 2025
Published on: Aug 16, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Milan Malhotra, Halina Pawlak-Kruczek, Khanh-Quang Tran, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.