Have a personal or library account? Click to login
Mycelium-Based Leather: A Review on Post-Processing Treatments and Material Enhancements Cover

Mycelium-Based Leather: A Review on Post-Processing Treatments and Material Enhancements

Open Access
|Aug 2025

References

  1. Fortune Business Insight (April 2025) [Online]. [Accessed 11.05.2025]. Available: https://www.fortunebusinessinsights.com/leather-goods-market-104405.
  2. Amobonye A., Lalung J., Awasthi M. K., Pillai S. Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry. Sustainable Materials and Technologies 2023:38:e00724. https://doi.org/10.1016/j.susmat.2023.e00724">https://doi.org/10.1016/j.susmat.2023.e00724
  3. Li S., Cao S., Wang X., Zhang Y., Zhang X., Lu W., Zhu D. Investigating the mechanism of Zn cross-linking of chitin in a mycelium-based leather substitute and its performance evaluation. International Journal of Biological Macromolecules 2024:276(2):133954. https://doi.org/10.1016/j.ijbiomac.2024.133954">https://doi.org/10.1016/j.ijbiomac.2024.133954
  4. Vandelook S., Elsacker E., Van Wylick A., De Laet L., Peeters E. Current state and future prospects of pure mycelium materials. Fungal Biology and Biotechnology 2021:8:20. https://doi.org/10.1186/s40694-021-00128-1">https://doi.org/10.1186/s40694-021-00128-1
  5. Peeters E., Saluena M., Vandelook S. Growing sustainable materials from filamentous fungi. The Biochemist 2023:45(3):8–13. https://doi.org/10.1042/bio_2023_120">https://doi.org/10.1042/bio_2023_120
  6. D’Errico A., Schröpfer M., Mondschein A., Safeer A. A., Baldus M., Wösten H. A. B. Cross-linking impacts the physical properties of mycelium leather alternatives by targeting hydroxyl groups of polysaccharides and amino groups of proteins. Heliyon 2024:10(16):e36263. https://doi.org/10.1016/j.heliyon.2024.e36263">https://doi.org/10.1016/j.heliyon.2024.e36263
  7. Fuck W. F., Gutterres M., Marcílio N. R., Bordingnon S. The influence of Chromium supplied by tanning and wet finishing processes on the formation of Cr(VI) in leather. Brazilian Journal of Chemical Engineering 2011:28:221–228. https://doi.org/10.1590/S0104-66322011000200006">https://doi.org/10.1590/S0104-66322011000200006
  8. Agency for Toxic Substances and Disease Registry (ATSDR) (April 2025) [Online]. [Accessed 11.05.2025]. Available: https://www.atsdr.cdc.gov/
  9. Elsacker E., Vandelook S., Peeters E. Recent technological innovations in mycelium materials as leather substitutes: a patent review. Frontiers in Bioengineering and Biotechnology 2023:11:1204861. https://doi.org/10.3389/fbioe.2023.1204861">https://doi.org/10.3389/fbioe.2023.1204861
  10. Raman J., Kim D.-S., Kim H.-S., Oh D.-S., Shin H.-J. Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. Journal of Fungi 2022:8:317. https://doi.org/10.3390/jof8030317">https://doi.org/10.3390/jof8030317
  11. Shankar M. P., Hamza A., Khalad A., Shanthi G., Kuppireddy S., Kumar D. S. Engineering mushroom mycelium for a greener built environment: Advancements in mycelium-based biocomposites and bioleather. Food Bioscience 2024:62:105577. https://doi.org/10.1016/j.fbio.2024.105577">https://doi.org/10.1016/j.fbio.2024.105577
  12. Wiedemann L., Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. EUBCE Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14">https://doi.org/10.5071/25thEUBCE2017-2CV.4.14
  13. Conti F., Wiedemann L., Sonnleitner M., Goldbrunner M. Thermal behavior of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42(2):1099–1104. https://doi.org/10.1039/C7NJ03199H">https://doi.org/10.1039/C7NJ03199H
  14. Williams E., Cenian K., Golsteijn L., Morris B., Scullin M. L. Life cycle assessment of MycoWorks’ ReishiTM: the first low-carbon and biodegradable alternative leather. Environmental Sciences Europe 2022:34:120. https://doi.org/10.1186/s12302-022-00689-x">https://doi.org/10.1186/s12302-022-00689-x
  15. Bitting S., Derme T., Lee J., Mele T. V., Dillenburger B., Block P. Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics 2022:7(2):44. https://doi.org/10.3390/biomimetics7020044">https://doi.org/10.3390/biomimetics7020044
  16. Huq T., Khan A., Brown D., Dhayagude N., He Z., Ni Y. Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts 2022:7(2):85–98. https://doi.org/10.1016/j.jobab.2022.01.002">https://doi.org/10.1016/j.jobab.2022.01.002
  17. Kato Y., Kaminaga J., Matsuo R., Isogai A. TEMPO-mediated oxidation of chitin, regenerated chitin and -acetylated chitosan. Carbohydrate Polymers 2004:58(4):421–426. https://doi.org/10.1016/j.carbpol.2004.08.011">https://doi.org/10.1016/j.carbpol.2004.08.011
  18. Olde D. L. H. H., Dijkstra P. J., Van Luyn M. J. A., Van Wachem P. B., Nieuwenhuis P., Feijen J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science: Materials in Medicine 1995:6:460–472. https://doi.org/10.1007/BF00123371">https://doi.org/10.1007/BF00123371
  19. Crawford A., Ruthanna Miller S., Branco S., Fletcher J., Stefanov D. Growing mycelium leather: a paste substrate approach with post-treatments. Research Directions: Biotechnology Design 2024:2:e6. https://doi.org/10.1017/btd.2024.6">https://doi.org/10.1017/btd.2024.6
  20. Song L., Liu Y., Xiao S., Yuan X., Han X. Revolutionizing Eco-Friendly Leather Production: A Freeze-Thaw and Liquid Fermentation Approach with Fungal Mycelium. Journal of Fungi 2025:11:326. https://doi.org/10.3390/jof11040326">https://doi.org/10.3390/jof11040326
  21. Theamdee P., Auasalung T. The Effect of Glycerol Content on Physical and Mechanical Properties of the Biodegradable Film from Sweet Potato Flour for Preserving Namwa Banana. Life Sciences and Environment Journal 2019:20:70–80.
  22. Deeg K., Gima Z., Smith A., Stoica O., Tran K. Greener Solutions: Improving performance of mycelium-based leather. Final Report to MycoWorks 2017.
  23. Pilz M., Castellan N., Conti F., Qoura F., Brueck T. Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production. Environmental and Climate Technologies 2024:28(1):510–526. https://doi.org/10.2478/rtuect-2024-0040">https://doi.org/10.2478/rtuect-2024-0040
  24. Appels F. V. W., Van Den Brandhof J. G., Dijksterhuis J., De Kort G. W., Wösten H. A. B. Fungal mycelium classified in different material families based on glycerol treatment. Communications Biology 2020:3:334. https://doi.org/10.1038/s42003-020-1064-4">https://doi.org/10.1038/s42003-020-1064-4
  25. Wang J., Mutalik R. B., Smith M. J., Subler N. E., McKenzie L., Collins I. S., Flowers K., Addy V., McAusland Bainbridge J., Heinrich M. J. Methods of generating materials with improved properties. U.S. Patent 0007777A1, Jan. 31, 2022.
  26. ] Utami Hatmi R., Apriyati E., Cahyaningrum N. Edible coating quality with three types of starch and sorbitol plasticizer. E3S Web of Conferences 2020:142:02003. https://doi.org/10.1051/e3sconf/202014202003">https://doi.org/10.1051/e3sconf/202014202003
  27. Montalti M., Babbini S., Gandia A. Method of producing fungal mats and materials made therefrom. Patent 102018000010869, Jan. 06, 2020.
  28. Naranjo-Briceno L., Fuentes K. M., Escalona G., Rebolledo de Lima H., Figueroa J. M., Zamora P. Nanoemulsion for internal himectation of mycelium-based textiles. Patent WO 040954A1, Feb. 27, 2022.
  29. Farrahnoor A., Sazali N.A.A., Yusoff H., Zhou B. T. Effect of Beeswax and Coconut Oil as Natural Coating Agents on Morphological, Degradation Behaviour, and Water Barrier Properties of Mycelium-Based Composite in Modified Controlled Environment. Progress in Organic Coatings 2024:196:108763. https://doi.org/10.1016/j.porgcoat.2024.108763">https://doi.org/10.1016/j.porgcoat.2024.108763
  30. Thombare N., Kumar S., Kumari U., Sakare P., Yogi R. K., Prasad N., Sharma K. K. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. International Journal of Biological Macromolecules 2022:215:203–223. https://doi.org/10.1016/j.ijbiomac.2022.06.090">https://doi.org/10.1016/j.ijbiomac.2022.06.090
  31. Akhter S., Jahan M. S., Rahman M. L., Ruhane T. A., Ahmed M., Khan M. A. Revolutionizing Sustainable Fashion: Jute–Mycelium Vegan Leather Reinforced with Polyhydroxyalkanoate Biopolymer Crosslinking from Novel Bacteria. Advances in Polymer Technology 2024:1–10. https://doi.org/10.1155/2024/1304800">https://doi.org/10.1155/2024/1304800
  32. Kniep J., Graupner N., Reimer J. J., Müssig J. Mycelium-based biomimetic composite structures as a sustainable leather alternative. Materials Today Communications 2024:39:109100. https://doi.org/10.1016/j.mtcomm.2024.109100">https://doi.org/10.1016/j.mtcomm.2024.109100
  33. Chen H., Klemm S., Dönitz A. G., Ou Y., Schmidt B., Fleck C., Simon U., Völlmecke C. Tailoring the Mechanical Properties of Fungal Mycelium Mats with Material Extrusion Additive Manufacturing of PHBH and PLA Biopolymers. ACS Omega 2024:9(50):49609. https://doi.org/10.1021/acsomega.4c07661">https://doi.org/10.1021/acsomega.4c07661
  34. Madusanka C., Udayanga D., Nilmini R., Rajapaksha S., Hewawasam C., Manamgoda D., Vasco-Correa J. A review of recent advances in fungal mycelium based composites. Discover Materials 2024:4:13. https://doi.org/10.1007/s43939-024-00084-8">https://doi.org/10.1007/s43939-024-00084-8
DOI: https://doi.org/10.2478/rtuect-2025-0026 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 390 - 404
Submitted on: Apr 11, 2025
Accepted on: Jun 18, 2025
Published on: Aug 7, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Beatrice Benetti, Fosca Conti, Piet Dimitriadis, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.