References
- Directive 2018/2002/EU of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. Official Journal of the European Union 2018: L 328/210.
- Farid M. M., Khudhair A. M., Razack S. A. K., Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Conversion and Management 2004:45(9–10):1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015
- Tyagi V. V., Buddhi D. PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews 2007:11(6):1146–1166. https://doi.org/10.1016/j.rser.2005.10.002
- Rucevskis S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):74–89. https://doi.org/10.2478/rtuect-2019-0056
- Sharma A., Tyagi V. V., Chen C. R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 2009:13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005
- Khodadadi J. M., Hosseinizadeh S. F. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer 2007:34(5):534–543. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.005
- Elbahjaoui R., Qarnia H. El. Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection. Energy and Buildings 2017:153:1–17. https://doi.org/10.1016/j.enbuild.2017.08.003
- Zhou D., Zhao C. Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 2012:92:593–605. https://doi.org/10.1016/j.apenergy.2011.08.025
- Directive 2018/844/EU of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Official Journal of the European Union 2018:L156/75 [Online]. [Accessed 12.11.2021]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0844&from=EN
- Ma Z., Lin W., Sohel M. I. Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews 2016:58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234
- Nematpour Keshteli A., Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review. Journal of Molecular Liquids 2019:274:516–533. https://doi.org/10.1016/j.molliq.2018.10.151
- Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., Shamseer L., Tetzlaff J. M., Akl E. A., Brennan S. E., Chou R., Glanville J., Grimshaw J. M., Hróbjartsson A., Lalu M. M., Li T., Loder E. W., Mayo-Wilson E., McDonald S., McGuinness L. A., Stewart L. A., Thomas J., Tricco A C., Welch V. A., Whiting P., Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ 2021:372. https://doi.org/10.1136/bmj.n71
- Zhang H., Zou Y., Sun Y., Sun L., Xu F., Zhang J., Zhou H. A novel thermal-insulating film incorporating microencapsulated phase-change materials for temperature regulation and nano-TiO2 for UV-blocking. Solar Energy Materials and Solar Cells 2015:137:210–218. https://doi.org/10.1016/j.solmat.2015.02.018
- Khadiran T., Hussein M. Z., Zainal Z., Rusli R. Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage. Journal of the Taiwan Institute of Chemical Engineers 2015:55:189–197. https://doi.org/10.1016/j.jtice.2015.03.028
- Sathishkumar A., Kathirkaman M. D., Ponsankar S., Balasuthagar C. Experimental investigation on solidification behaviour of water base nanofluid PCM for building cooling applications. Indian Journal of Science and Technology 2016:9(39):1–7. https://doi.org/10.17485/ijst/2016/v9i39/94966
- Yang D., Peng F., Zhang H., Guo H., Xiong L., Wang C., Shi S., Chen X. Preparation of palygorskite paraffin nanocomposite suitable for thermal energy storage. Applied Clay Science 2016:126:190–196. https://doi.org/10.1016/j.clay.2016.03.014
- Ma Z., W Lin., Sohel M. I. Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews 2016:58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234
- Anghel E. M., Pavel P. M., Constantinescu M., Petrescu S., Atkinson I., Buixaderas E. Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage. Applied Energy 2017:208:1222–1231. https://doi.org/10.1016/j.apenergy.2017.09.031
- Sharma S., Micheli L., Chang W., Tahir A. A., Reddy K. S., Mallick T. K. Nano-enhanced Phase Change Material for thermal management of BICPV. Applied Energy 2017:208:719–733. https://doi.org/10.1016/j.apenergy.2017.09.076
- Suresh Kumar K. R., Parameshwaran R., Kalaiselvam S. Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material. Solar Energy Materials and Solar Cells 2017:171:148–160. https://doi.org/10.1016/j.solmat.2017.06.031
- Li Y., Yu S., Chen P., Rojas R., Hajian A., Berglund L. Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy 2017:34:541–548. https://doi.org/10.1016/j.nanoen.2017.03.010
- Cao R.-R., Li X., Chen S., Yuan H.-R., Zhang X.-X. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites. Energy 2017:138:157–166. https://doi.org/10.1016/j.energy.2017.07.049
- Konuklu Y., Ersoy O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials and Solar Cells 2017:168:130–135. https://doi.org/10.1016/j.solmat.2017.04.019
- Barreneche C., Mandragon R., Ventura-Espinosa D., Mata J., Cabeza L. F., Inés Fernández A., Enrique Julia J. Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change material. Applied Thermal Engineering 2018:128:121–126. https://doi.org/10.1016/j.applthermaleng.2017.09.014
- Liu L., Zheng K., Yan Y., Cai Z., Lin S., Hu X. Graphene Aerogels Enhanced Phase Change Materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Solar Energy Materials and Solar Cells 2018:185:487–493. https://doi.org/10.1016/j.solmat.2018.06.005
- Jiang J., Zheng Q., Yan Y., Guo D., Wang F., Wu S., Sun W. Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study. Applied Energy 2018:220:395–407. https://doi.org/10.1016/j.apenergy.2018.03.134
- Nada S. A., El-Nagar D. H. Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules. Renewable Energy 2018:127:630–641. https://doi.org/10.1016/j.renene.2018.05.010
- Dadvand A., Boukani N. H., Dawoodian M. Numerical simulation of the melting of a NePCM due to a heated thin plate with different positions in a square enclosure. Thermal Science and Engineering Progress 2018:7:248–266. https://doi.org/10.1016/j.tsep.2018.06.013
- Shah K. W., Lu Y. Morphology, large scale synthesis and building applications of copper nanomaterials. Construction and Building Materials 2018:180:544–578. https://doi.org/10.1016/j.conbuildmat.2018.05.159
- Barreneche C., Martin M., Calvo-de la Rosa J., Majo M., Fernandez A. I. Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings. Molecules 2019:24(7):1232. https://doi.org/10.3390/molecules24071232
- Martin M., Villalba A., Ines Fernandez A., Barrenechea C. Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: Lab-scale characterization. Energy and Buildings 2019:192:75–83. https://doi.org/10.1016/j.enbuild.2019.03.029
- Liu H., Niu J., Wang X., Wu D. Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement. Energy 2019:188:116075. https://doi.org/10.1016/j.energy.2019.116075
- Putra N., Rawi S., Amin M., Kusrini E., E. Kosasih A., Indra Mahlia T. M. Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. Journal of Energy Storage 2019:21:32–39. https://doi.org/10.1016/j.est.2018.11.007
- Sarabandi D., Roudini G., Barahuie F. Activated carbon derived from pine cone as a framework for the preparation of n-heptadecane nanocomposite for thermal energy storage. Journal of Energy Storage 2019:24:100795. https://doi.org/10.1016/j.est.2019.100795
- Song S., Qiu F., Zhu W., Guo Y., Zhang Y., Ju Y., Feng R., Liu Y., Chen Z., Zhou J., Xiong C., Dong L. Polyethylene glycol/halloysite@Ag nanocomposite PCM for thermal energy storage: Simultaneously high latent heat and enhanced thermal conductivity. Solar Energy Materials and Solar Cells 2019:193:237–245. https://doi.org/10.1016/j.solmat.2019.01.023
- Akhmetov B., Navarro M. E., Seitov A., Kaltayev A., Bakenov Z., Ding Y. Numerical study of integrated latent heat thermal energy storage devices using nanoparticle-enhanced phase change materials. Solar Energy 2019:194:724–741. https://doi.org/10.1016/j.solener.2019.10.015
- Zhu X., Han L., Lu Y., Wei F., Jia X. Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes. Applied Energy 2019:254:113688. https://doi.org/10.1016/j.apenergy.2019.113688
- Wu S., Li T., Wu M., Xu J., Hu Y., Chao J., Yan T., Wang R. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. Journal of Materials Chemistry A 2020:8(38):20011–20020. https://doi.org/10.1039/D0TA05904H
- Xiao X., Jia H., Wen D., Zhao X. Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite. Energy 2020:192:116593. https://doi.org/10.1016/j.energy.2019.116593
- Alzoubi H. H., Albiss B. A., Abu Sini S. S. Performance of cementitious composites with nano PCMs and cellulose nano fibers. Construction and Building Materials 2020:236:117483. https://doi.org/10.1016/j.conbuildmat.2019.117483
- Pinto S. C., Silva N. H. C. S., Pinto R. J. B., Freire C. S. R., Duarte I., Vicente R., Vesenjak M., Marques P. A. A. P. Multifunctional hybrid structures made of open-cell aluminum foam impregnated with cellulose/graphene nanocomposites. Carbohydrate Polymers 2020:238:116197. https://doi.org/10.1016/j.carbpol.2020.116197
- Ranjbar S. G., Roudini G., Barahuie F. Fabrication and characterization of phase change material-SiO2 nanocomposite for thermal energy storage in buildings. Journal of Energy Storage 2020:27:101168. https://doi.org/10.1016/j.est.2019.101168
- Kant K., Anand A., Shukla A., Sharma A. Heat transfer study of building integrated photovoltaic (BIPV) with nano-enhanced phase change materials. Journal of Energy Storage 2020:30:101563. https://doi.org/10.1016/j.est.2020.101563
- John M. R. W., Subramanian L. R. G. Thermodynamic analysis of a compression ignition engine with latent heat storage unit. Applied Thermal Engineering 2020:167:114697. https://doi.org/10.1016/j.applthermaleng.2019.114697
- Zhang M., Wang C., Luo A., Liu Z., Zhang X. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials. Applied Thermal Engineering 2020:166:114639. https://doi.org/10.1016/j.applthermaleng.2019.114639
- Sheikholeslami M., Jafaryar M., Shafee A., Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. Journal of Cleaner Production 2020:262:121206. https://doi.org/10.1016/j.jclepro.2020.121206
- Parameshwaran R., Kumar G. N., Ram V. V. Experimental analysis of hybrid nanocomposite-phase change material embedded cement mortar for thermal energy storage. Journal of Building Engineering 2020:30:101297. https://doi.org/10.1016/j.jobe.2020.101297
- Ashok V., Geetha N. B., Rajkumar S., Pauline T. Experimental Investigations for Thermal Energy Management by Encapsulation of Nano -Enhanced Bio Phase Change Material in buildings. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022:44(2):4165–4183. https://doi.org/10.1080/15567036.2021.1967517
- Al-Mahmodi A. F., Afolabi L. O., Awadh M. G., Batcha M. F. M. Zamani N., Isa N. M., Didane D. H. Thermal Behaviour of Nanocomposite Phase Change Material for Solar Thermal Applications. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2021:88(2):131–146. https://doi.org/10.37934/arfmts.88.2.133146
- Zhang T., Zhang T., Zhang J., Zhang D., Guo P., Li H., Li C., Wang Y. Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties. Renewable Energy 2021:165(1):504–513. https://doi.org/10.1016/j.renene.2020.11.030
- Sarrafha H., Kasaeian A., Jahangir M. H., Taylor R. A. Transient thermal response of multi-walled carbon nanotube phase change materials in building walls. Energy 2021:224:120120. https://doi.org/10.1016/j.energy.2021.120120
- Habib N. A., Ali A. J., Chaichan M. T., Kareem M. Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system. Thermal Science and Engineering Progress 2021:23:100877. https://doi.org/10.1016/j.tsep.2021.100877
- Musavi S. M., Barahuie F., Irani M., A. Safamanesh, Malekpour A. Enhanced properties of phase change material - SiO2-graphene nanocomposite for developing structural–functional integrated cement for solar energy absorption and storage. Renewable Energy 2021:174:918–927. https://doi.org/10.1016/j.renene.2021.04.140
- Bahrami L., Kasaeian A., Pourfayaz F., Ghafarian S. Modeling of the effect of nano-enhanced phase change material on the performance of a large-scale wallboard. Journal of Thermal Engineering 2021:7(8):1857–1871. https://doi.org/10.18186/thermal.1051259
- Ma M., Xie M., Ai Q. Numerical simulation on photo-thermal properties of double glazing unit filled with TiN-Al2O3 binary nanoparticles enhanced phase change material. Sustainable Energy Technologies and Assessments 2021:48:101676. https://doi.org/10.1016/j.seta.2021.101676
- Yang R., Li D., Lopez Salazar S., Rao Z., Arici M., Wei W. Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material. Solar Energy Materials and Solar Cells 2021:219:110792. https://doi.org/10.1016/j.solmat.2020.110792
- Ma K., Zhang X., Ji J., Han L. Development, characterization and modification of mannitol-water based nanocomposite phase change materials for cold storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022:650:129571. https://doi.org/10.1016/j.colsurfa.2022.129571
- Karthikeyan K., Mariappan V., Kalidoss P., Anish R., Sarafoji P., Reddy J. V., Satpathy T. K. Preparation and thermal characterization of capric-myristic acid binary eutectic mixture with silver–antimony tin oxide and silver-graphene nanoplatelets hybrid-nanoparticles as phase change material for building applications. Materials Letters 2022:328:133086. https://doi.org/10.1016/j.matlet.2022.133086
- Vu T. D., Xie H., Wang S., Hu J., Zeng X., Long Y. Durable vanadium dioxide with 33-year service life for smart windows applications. Materials Today Energy 2022:26:100978. https://doi.org/10.1016/j.mtener.2022.100978
- Salgado-Pizarro R., Martín M., Svobodova-Sedlackova A., Calderón A., Haurie L., Fernández A. I., Barreneche C. Manufacturing of nano-enhanced shape stabilized phase change materials with montmorillonite by Banbury oval rotor mixer for buildings applications. Journal of Energy Storage 2022:55(A):105289. https://doi.org/10.1016/j.est.2022.105289
- Tuncbilek E., Arici M., Krajcik M., Li Y., Jurcevic M., Nizetic S. Impact of nano-enhanced phase change material on thermal performance of building envelope and energy consumption. International Journal of Energy Research 2022:46(14):20249–20264. https://doi.org/10.1002/er.8200
- Thangapandian E., Palanisamy P. An experimental and numerical study to enhance the thermal characteristics of LA/CuO/Al2O3 nanocomposites as a phase change material for building cooling applications. Polymer Composites 2022:43(8):5426–5441. https://doi.org/10.1002/pc.26845
- Ajdari H., Ameri A. Performance assessment of an inclined stepped solar still integrated with PCM and CuO/GO nanocomposite as a nanofluid. Journal of Building Engineering 2022:49:104090. https://doi.org/10.1016/j.jobe.2022.104090
- Anand A., Srivastava V., Singh S., Shukla A., Choubey A. K., Sharma A. Development of nano-enhanced phase change materials using manganese dioxide nanoparticles obtained through green synthesis. Energy Storage 2022:4(5):e344. https://doi.org/10.1002/est2.344
- Shen H., Liu H., Wang X. Surface construction of catalase-immobilized Au/PEDOT nanocomposite on phase-change microcapsules for enhancing electrochemical biosensing detection of hydrogen peroxide. Applied Surface Science 2023:612:155816. https://doi.org/10.1016/j.apsusc.2022.155816
- Maleki M., Sharifi N., Karimian H., Ahmadi R., Aminizadeh P., Sanadgol R., Valanezhad A. Electro-driven carbon foam/PCMs nanocomposites for sustainable energy management. Journal of Energy Storage 2023:67:107599. https://doi.org/10.1016/j.est.2023.107599
- Amirkhani Khabisi M., Roudini G., Barahuie F., Sheybani H., Ibrar M. Evaluation of phase change material-graphene nanocomposite for thermal regulation enhancement in buildings. Heliyon 2023:9(11):e21699. https://doi.org/10.1016/j.heliyon.2023.e21699
- Yang X., Li D., Yang R., Ma Y., Tong X., Wu Y., Arıcı M. Comprehensive performance evaluation of double-glazed windows containing hybrid nanoparticle-enhanced phase change material. Applied Thermal Engineering 2023:223:119976. https://doi.org/10.1016/j.applthermaleng.2023.119976
- Atinafu D. G., Yun B. Y., Wi S., Chang S. J., Kim S. Unveiling sustainable nano-enabled phase change materials for high thermal stability and energy storage capacity. Journal of Energy Storage 2023:60:106650. https://doi.org/10.1016/j.est.2023.106650
- Naveen Kumar G., Vinayaka Ram V., Parameshwaran R. Thermal and structural properties of cement mortar embedded with hybrid nanocomposite based phase change nanocapsules for building application. Construction and Building Materials 2023:385:131481. https://doi.org/10.1016/j.conbuildmat.2023.131481
- Daneshazarian R., Eslami R., Azizi N., Zarrin H., Berardi U. Performance evaluation of a novel nano-enhanced phase change material for thermal energy storage applications. Journal of Energy Storage 2023:74(A):109376. https://doi.org/10.1016/j.est.2023.109376
- Paul J., Samykano M., Pandey A. K., Kadirgama K., Tyagi V. V. Nano Engineered Paraffin-Based Phase Change Material for Building Thermal Management. Buildings 2023:13(4):900. https://doi.org/10.3390/buildings13040900
- Yang R., Li D., Arıcı M., Salazar S. L., Wu Y., Liu C., Yıldız Ç. Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions. Renewable and Sustainable Energy Reviews 2023:186:113646. https://doi.org/10.1016/j.rser.2023.113646
- Reddy B. D., Rahul S. V. S., Harish R. Impact of fin number and nanoparticle size on molten salt NanoPCM melting in finned annular space. Journal of Energy Storage 2023:72(E):108705. https://doi.org/10.1016/j.est.2023.108705
- Gür M., Öztop H. F., Selimefendigil F. Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach. Renewable Energy 2023:218:119265. https://doi.org/10.1016/j.renene.2023.119265
- Daneshazarian R., Berardi U. Nano-enhanced thermal energy storage coupled to a hybrid renewable system for a high-rise zero emission building. Energy Conversion and Management 2023:291:117301. https://doi.org/10.1016/j.enconman.2023.117301
- Zhao Y., Huang Y., Wang N., Zhang Y., Cheng C., Zhang H., Gao D. Optimization of a phase change material enhanced low-concentration photovoltaic/thermal module. Energy and Buildings 2023:287:112987. https://doi.org/10.1016/j.enbuild.2023.112987
- Dastmalchi M., Boyaghchi F. A. Particle swarm optimization of phase change and indoor setpoint temperatures in a phase change material-air heat exchanger for free cooling of two climate zones. Energy Storage 2023:5(5):e441. https://doi.org/10.1002/est2.441
- Mishra S. K., Gupta M. K., Kumar R., Sharma A., Yadav A. S. Effect of Nanoparticles Enhanced Phase Change Materials in the Charging-Discharging Performance of Thermal Storage System. International Journal of Vehicle Structures and Systems 2023:15(6):779–785. https://doi.org/10.4273/ijvss.15.6.08
- Hayat M. A., Chen Y., Yang Y., Li L., Bevilacqua M. Enhancing thermal energy storage in buildings with novel functionalised MWCNTs-enhanced phase change materials: Towards efficient and stable solutions. Thermal Science and Engineering Progress 2024:47:102313. https://doi.org/10.1016/j.tsep.2023.102313
- Yasien A. M., Bassuoni M. T., Ghazy A. Phase change material nanocomposites as an internal curing aid for nano-modified concrete under cold weather. Construction and Building Materials 2024:411:134490. https://doi.org/10.1016/j.conbuildmat.2023.134490
- Rajamony R. K., Sofiah A. G. N., Kalidasan B., Samykano M., Pandey A. K., Suraparaju S. K., Paw J. K. S., Paranthaman V., Fouad Y., Noor M. M., Kalam M. A. Experimental investigation of tailoring functionalized carbon-based nano additives infused phase change material for enhanced thermal energy storage. Process Safety and Environmental Protection 2024:190:944–961. https://doi.org/10.1016/j.psep.2024.07.093
- Xiong Y., Li Y., Hu Y., Fu M., Li L., Huang Y., Cheng X. Preparation and characteristics of CuS-CNTs modified PVDF-based flexible composite phase change films. Journal of Energy Storage 2024:104:114421. https://doi.org/10.1016/j.est.2024.114421
- Rajamony R. K., Paw J. K. S., Pandey A. K., Sofiah A. G. N., Yadav A., Tak Y. C., Kiong T. S., Mohanty A., Soudagar M. E. M., Fouad Y. Eco-friendly approach to thermal energy storage: Assessing the thermal and chemical properties of coconut biochar-enhanced phase change material. Energy Storage 2024:6(5):e679. https://doi.org/10.1002/est2.679
- C. Gioti, Vasilopoulos K. C., Baikousi M., Salmas C. E., Ntaflos A., Paipetis A. S., Viskadourakis Z., Ikram R., Agathopoulos S., Kenanakis G., Karakassides M. A. Enhanced Gypsum Boards with Activated Carbon Composites and Phase Change Materials for Advanced Thermal Energy Storage and Electromagnetic Interference Shielding Properties. Micro 2024:4(1):61–79. https://doi.org/10.3390/micro4010005
- Jacob J., Paul J., Selvaraj J., Rahim N. A., Pandey A. K., Ahmad M. S., Kadirgama K. Investigating Long-Term Durability of Nanofillers (TiO2) Embedded Organic Eutectic Phase Change Composites. Energy Technology 2024:13(7):2400335. https://doi.org/10.1002/ente.202400335
- Karaağaç M. O. Performance evaluation of nano-enhanced phase change materials for thermal energy storage: An experimental study. Case Studies in Thermal Engineering 2024:64:105412. https://doi.org/10.1016/j.csite.2024.105412
- Li D., Fu Q., Yang R., Zhang C., Duan Y., Yuan Z. Thermal performance of glazing envelopes embedded with nano- enhanced paraffin: a comparative study. Construction and Building Materials 2024:442:137612. https://doi.org/10.1016/j.conbuildmat.2024.137612
- Tan Q., Liu H., Shi Y., Zhang M., Yu B., Zhang Y. Lauric acid/stearic acid/nano-particles composite phase change materials for energy storage in buildings. Journal of Energy Storage 2024:76:109664. https://doi.org/10.1016/j.est.2023.109664
- Pandey A. K., Kalidasan B., Said Z., Mishra Y. K., Hwang J.-Y. Graphene nanoplatelets-infused binary eutectic phase change materials for enhanced thermal energy storage. Materials Today Sustainability 2024:27:100934. https://doi.org/10.1016/j.mtsust.2024.100934
- Sun Y., He F., Wang J., Wang L., Fu B., Tang W. Preparation and characterization of fatty acid ternary eutectic mixture/Nano-SiO2 composite phase change material for building applications. Applied Energy 2024:376(A):124221. https://doi.org/10.1016/j.apenergy.2024.124221
- Wang J.-X., Mao Y., Miljkovic N. Nano-Enhanced Graphite/Phase Change Material/Graphene Composite for Sustainable and Efficient Passive Thermal Management. Advanced Science 2024:11(38):2402190. https://doi.org/10.1002/advs.202402190
- Yin S., Lu M., Liu C., Tong L., Wang L., Ding Y. Fabrication and thermal properties of capric–stearic acid eutectic/nano-SiO2 phase change material with expanded graphite and CuO for thermal energy storage. Journal of Energy Storage 2024:77:110025. https://doi.org/10.1016/j.est.2023.110025
- Yadav A., Samykano M., Pandey A. K., Kareri T., Kalidasan B. Optimizing thermal properties and heat transfer in 3D biochar-embedded organic phase change materials for thermal energy storage. Materials Today Communications 2024:38:108114. https://doi.org/10.1016/j.mtcomm.2024.108114
- Ismail M., Alkhazaleh A. H., Sirhan A., Ali M., Ali A. M., Masri J. Development and characterisation of myristic acid-paraffin wax, silica fume and zinc oxide cementitious composites for thermal control in buildings. Case Studies in Thermal Engineering 2024:63:105283. https://doi.org/10.1016/j.csite.2024.105283
- PangY., Sun J., Zhang W., Lai C., Liu Y., Guo H., Zhang D. Green, recyclable and high latent heat form-stable phase change composites supported by cellulose nanofibers for thermal energy management. International Journal of Biological Macromolecules 2024:264:130633. https://doi.org/10.1016/j.ijbiomac.2024.130633
- Rolka P., Przybylinski T., Kwidzinski R., Lackowski M. Investigation of low-temperature phase change material (PCM) with nano-additives improving thermal conductivity for better thermal response of thermal energy storage. Sustainable Energy Technologies and Assessments 2024:66:103821. https://doi.org/10.1016/j.seta.2024.103821
- Paul J., Pandey A. K. Kadirgama K., Samykano M., Jacob J., Selvaraj J., Saidur R. Optimizing graphene-silver embedded phase change composite synthesis using design of experiments. Journal of Energy Storage 2024:82:110523. https://doi.org/10.1016/j.est.2024.110523
- Mahdi J. M., Ali-Najjar H. M. T., Togun H., Biswas N., Boujelbene M., Alshammari S., Talebizadehsardari P. Year- round performance evaluation of photovoltaic-thermal collector with nano-modified phase-change material for building application in an arid desert climate zone. Energy and Buildings 2024:320:114597. https://doi.org/10.1016/j.enbuild.2024.114597
- Li P., Feng D., Feng Y., Zhang X. Converting bio-waste rice into ultralight hierarchical porous carbon to pack polyethylene glycol for multifunctional applications: Experiment and molecular dynamics simulations. Composites Part A: Applied Science and Manufacturing 2024:178:107979. https://doi.org/10.1016/j.compositesa.2023.107979
- Kumar A., Gupta A., Sharma K., Singh M. Effect of graphene oxide on thermal charging and discharging behaviour of paraffin wax as nano-enhanced phase change materials. MRS Advances 2024:9(15):1213–1218. https://doi.org/10.1557/s43580-024-00895-0
- Baniasadi H., Farzan A., McCord M. R. Y., Silva P. E. S., Abdi B., Paganelli Z., Vapaavuori J., Tehrani A., Niskanen J. Photocurable cellulose-based composites with PEGylated graphene oxide for leakage-free thermal energy storage and photothermal applications. International Journal of Biological Macromolecules 2025:310:143399. https://doi.org/10.1016/j.ijbiomac.2025.143399
- Gur M., Gurgenc E., Cosanay H., Öztop H. F. Solar-assisted radiant heating system with nano-B4C enhanced PCM for nearly zero energy buildings. Case Studies in Thermal Engineering 2025:65:105544. https://doi.org/10.1016/j.csite.2024.105544
- Hu B., Guo H., Li T., Cao X., Cao M., Qi W., Cui Y., Li B. Engineering tiramisu-like phase change nanocomposite for superior thermal energy management and electromagnetic interference shielding. Journal of Materials Science & Technology 2025:206:113–124. https://doi.org/10.1016/j.jmst.2024.04.021
- Bilal A. S. S., Bilal M. M., Fatima R., Ajmal khan M., Hasnain M., Munir M. U., Bano N., Hussain I. Enhancing thermo-physical properties of paraffin wax phase change material with MXene nanoflakes for improved energy storage and heat transfer applications. Results in Engineering 2025:25:104557. https://doi.org/10.1016/j.rineng.2025.104557
- Gurgenc E., Gur M., Cosanay H., Gurgenc T., Oztop H. F. Effects of position of semi-circular body on melting of a novel B4C/RT44HC PCM nanocomposite in a closed space. Case Studies in Thermal Engineering 2025:65:105628. https://doi.org/10.1016/j.csite.2024.105628
- Abass P. J., Muthulingam S. Energy-efficient concrete roofs for buildings: Integrating macroencapsulated nano- enhanced PCMs for hot climate adaptation. Case Studies in Thermal Engineering 2025:66:105744. https://doi.org/10.1016/j.csite.2025.105744
- Aboueian J., Shahsavar A., Askarifard Jahromi H. R. Parametric assessment of a building-integrated PV/T system with a Nanofluid/NEPCM spectral splitter. Journal of Building Engineering 2025:103:112042. https://doi.org/10.1016/j.jobe.2025.112042
- Calotă R., Pop O., Croitoru C., Bode F., Berville C., Ovadiuc E. Performance analysis of solar collectors with nano- enhanced phase change materials during transitional periods between cold and warm seasons in the continental temperate climates. Journal of Energy Storage 2025:114(B):115659. https://doi.org/10.1016/j.est.2025.115659
- Shahsavar A., Aboueian J., Askarifard Jahromi H. R. Advanced building utility systems: Utilizing a thermal wheel and a photovoltaic/thermal system equipped with a nanofluid/nano-enhanced PCM-based spectral splitter. Energy and Buildings 2025:337:115669. https://doi.org/10.1016/j.enbuild.2025.115669
- Belazreg A., Qasem N. A. A., Abderrahmane A., Younis O., Guedri K. Enhanced webbed-tubes thermal storage unit for solar heaters. Results in Engineering 2025:26:104750. https://doi.org/10.1016/j.rineng.2025.104750
- Gür M., Gürgenç E., Coşanay H., Öztop H. F. Solar-assisted radiant heating system with nano-B4C enhanced PCM for nearly zero energy buildings. Case Studies in Thermal Engineering 2025:65:105544. https://doi.org/10.1016/j.csite.2024.105544
- Wilson John M. R., Ganapathy Subramanian L. R. Thermodynamic analysis of a compression ignition engine with latent heat storage unit. Applied Thermal Engineering 2020:167:114697. https://doi.org/10.1016/j.applthermaleng.2019.114697
- Tunçbilek E., Arıcı M., Krajčík M., Li Y., Jurčević M., Nižetić S. Impact of nano-enhanced phase change material on thermal performance of building envelope and energy consumption. International Journal of Energy Research 2022:46(14):20249–20264. https://doi.org/10.1002/er.8200
- Gur M., Oztop H. F., Selimefendigil F. Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach. Renewable Energy 2023:218:119265. https://doi.org/10.1016/j.renene.2023.119265
- Karaağaç M. O. Performance evaluation of nano-enhanced phase change materials for thermal energy storage: An experimental study. Case Studies in Thermal Engineering 2024:64:105412. https://doi.org/10.1016/j.csite.2024.105412
- Kalnæs S. E., Jelle B. P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings 2015:94:150–176. https://doi.org/10.1016/j.enbuild.2015.02.023
- Kumar R., Mitra A., Srinivas T. Role of nano-additives in the thermal management of lithium-ion batteries: A review. Journal of Energy Storage 2022:48:104059. https://doi.org/10.1016/j.est.2022.104059
- Mitra A., Kumar R., Singh D. K., Said Z. Advances in the improvement of thermal-conductivity of phase change material-based lithium-ion battery thermal management systems: An updated review. Journal of Energy Storage 2022:53:105195. https://doi.org/10.1016/j.est.2022.105195
- GaneshKumar P., Sivalingam V., Divya S., Oh T. H., Vigneswaran V. S., Velraj R. Thermophysical exploration: State-of-the-art review on phase change materials for effective thermal management in lithium-ion battery systems. Journal of Energy Storage 2024:87:111412. https://doi.org/10.1016/j.est.2024.111412
- Ushak S., Song W., Marín P. E., Milian Y., Zhao D., Grageda M., Lin W., Chen M., Han Y. A review on phase change materials employed in Li-ion batteries for thermal management systems. Applied Materials Today 2024:37:102021. https://doi.org/10.1016/j.apmt.2023.102021
- Yaw C. T., Rajamony R. K., Bhutto Y. A., Bakthavatchalam B., Kottala R. K., Chopra K., Paw J. K. S., Doroody C., Allasi H. L., Soudagar M. E. M. Two phase heat transfer approaches for battery thermal management: Current status, challenges and future outlook. Results in Engineering 2025:27:105749. https://doi.org/10.1016/j.rineng.2025.105749
- Ma Z., Lin W., Sohel M. I. Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews 2016:58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234
- Sathishkumar A., Sundaram P., Cheralathan M., Kumar P. G. Effect of nano-enhanced phase change materials on performance of cool thermal energy storage system: A review. Journal of Energy Storage 2024:78:110079. https://doi.org/10.1016/j.est.2023.110079
- Sidik N. A. C., Kean T. H., Chow H. K., Rajaandra A., Rahman S., Kaur J. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: A review. International Communications in Heat and Mass Transfer 2018:94:85–95. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.024
- Nemś A., Daniarta S., Nemś M., Kolasiński P., Ushak S. A review of artificial intelligence to thermal energy storage and heat transfer improvement in phase change materials. Sustainable Materials and Technologies 2025:44:e01348. https://doi.org/10.1016/j.susmat.2025.e01348
- Nagar S., Sreenivasa S. Mathematical modeling, numerical simulation and experimental validation of temperature profiles of PCMs and their applications in industry 4.0: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2024:238(17):8850–8876. https://doi.org/10.1177/09544062241242704
- Mohammadpour J., Lee A. Investigation of nanoparticle effects on jet impingement heat transfer: A review. Journal of Molecular Liquids 2020:316:113819. https://doi.org/10.1016/j.molliq.2020.113819
- Leong K. Y., Abdul Rahman M. R., Gurunathan B. A. Nano-enhanced phase change materials: A review of thermo- physical properties, applications and challenges. Journal of Energy Storage 2019:21:18–31. https://doi.org/10.1016/j.est.2018.11.008
- Williams J. D., Peterson G. P., Hernandez Lopez L., Sepelak V. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials. Nanomaterials 2021:11(10):2578. https://doi.org/10.3390/nano11102578
- Amudhalapalli G. K., Devanuri J. K. Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials – A comprehensive review. Thermal Science and Engineering Progress 2022:28:101049. https://doi.org/10.1016/j.tsep.2021.101049
- Liu Z., Huang S. M., Wang C., Zhuang Y. A review on non-Newtonian effects and structure-activity relationship of nanoparticles enhanced phase change materials in porous media. Journal of Energy Storage 2023:64:107221. https://doi.org/10.1016/j.est.2023.107221
- Han L., Zhang X., Ji J., Ma K. Research progress on the influence of nano-additives on phase change materials. Journal of Energy Storage 2022:55(D):105807. https://doi.org/10.1016/j.est.2022.105807
- Said Z., Pandey A. K., Tiwari A. K., Kalidasan B., Jamil F., Thakur A. K., Tyagi V. V., Sarı Ahmet., Ali H. M. Nano-enhanced phase change materials: Fundamentals and applications. Progress in Energy and Combustion Science 2024:104:101162. https://doi.org/10.1016/j.pecs.2024.101162
- Yadav A., Pandey A. K., Samykano M., Kalidasan B., Said Z. A review of organic phase change materials and their adaptation for thermal energy storage. International Materials Reviews 2024:69(7-8):380–446. https://doi.org/10.1177/09506608241292406
- Barthwal M., Dhar A., Powar S. Effect of Nanomaterial Inclusion in Phase Change Materials for Improving the Thermal Performance of Heat Storage: A Review. ACS Applied Energy Materials 2021:4(8):7462–7480. https://doi.org/10.1021/acsaem.1c01268
- Chalivendula S. R., Tarigonda H. Recent Advances in Organic Phase Change Materials for Thermal Energy Storage: A Review on Sustainable Development Applications. International Journal of Thermophysics 2025:46(6):1–56. https://doi.org/10.1007/s10765-025-03559-9
- Khodadadi J. M., Fan L., Babaei H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2013:24:418–444. https://doi.org/10.1016/j.rser.2013.03.031
- Abdoos B., Ghazvini M., Pourfayaz F., Ahmadi M. H., Nouralishahi A. A comprehensive review of nano-phase change materials with a focus on the effects of influential factors. Environmental Progress & Sustainable Energy 2022:41(2):e13808. https://doi.org/10.1002/ep.13808
- Yang L., Tian J., Ding Y., Alagumalai A., Selimefendigil F., Aghbashlo M., Tabatabaei M., Asirvatham L. G., Wongwise S., Sherif S. A., Michaelides E. E., Markides C. N., Mahian O.The physics of phase transition phenomena enhanced by nanoparticles. Applied Physics Reviews 2025:12(1):011307. https://doi.org/10.1063/5.0200714
- Chebli F., Mechighel F. Phase change materials: classification, use, phase transitions, and heat transfer enhancement techniques: a comprehensive review. Journal of Thermal Analysis and Calorimetry 2025:150(3):1353–1411. https://doi.org/10.1007/s10973-024-13877-z
- Sarath K. P., Feroz Osman M., Mukhesh R., Manu K. V., Deepu M. A review of the recent advances in the heat transfer physics in latent heat storage systems. Thermal Science and Engineering Progress 2023:42:101886. https://doi.org/10.1016/j.tsep.2023.101886
- Rostami S., Afrand M., Shahsaver A., Sheikholeslami M., Kalbasi R., Aghakhani S., Shadloo M. S., Oztop H. F. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy 2020:211:118698. https://doi.org/10.1016/j.energy.2020.118698
- Mebarek-Oudina F., Chabani I. Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems. Energies 2023:16(3):1066. https://doi.org/10.3390/en16031066
- Tofani K., Tiari S. Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review. Energies 2021:14(13):3821. https://doi.org/10.3390/en14133821
- Mohammadpour J., Lee A., Timchenko V., Taylor R. Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis. Energies 2022:15(9):3426. https://doi.org/10.3390/en15093426
- Li Z. R., Hu N., Fan L. W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Materials 2023:55:727–753. https://doi.org/10.1016/j.ensm.2022.12.037
- Aziz A., Waheed W., Mourad A., Aissa A., Younis O., Abu-Nada E., Alazzam A. Contemporary nano enhanced phase change materials: Classification and applications in thermal energy management systems. Journal of Energy Storage 2024:75:109579. https://doi.org/10.1016/j.est.2023.109579
- Tariq S. L., Ali H. M., Akram M. A., Janjua M. M., Ahmadlouydarab M. Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering 2020:176:115305. https://doi.org/10.1016/j.applthermaleng.2020.115305
- Wong W. P., Kagalkar A., Patel R., Patel P., Dharaskar S., Walvekar R., Khalid M., Gedam V. V. Nano-enhanced phase change materials for thermal energy storage: A comprehensive review of recent advancements, applications, and future challenges. Journal of Energy Storage 2023:74(A):109265. https://doi.org/10.1016/j.est.2023.109265
- Alagumalai A., Yang L., Ding Y., Marshall J. S., Mesgarpour M., Wongwises S., Rashidi M. M., Taylor R. A., Mahian O., Sheremet M., Wang L-P., Markides C. N. Nano-engineered pathways for advanced thermal energy storage systems. Cell Reports Physical Science 2022:3(8):101007. https://doi.org/10.1016/j.xcrp.2022.101007
- Pereira J., Moita A., Moreira A. An Overview of the Nano-Enhanced Phase Change Materials for Energy Harvesting and Conversion. Molecules 2023:28(15):5763. https://doi.org/10.3390/molecules28155763
- Punniakodi B. M. S., Senthil R. A review on container geometry and orientations of phase change materials for solar thermal systems. Journal of Energy Storage 2021:36:102452. https://doi.org/10.1016/j.est.2021.102452
- Rashid F. L., Dhaidan N. S., Mahdi A. J., Azziz H. N., Parveen R., Togun H., Homod R. Z. Heat transfer enhancement of phase change materials using letters-shaped fins: A review. International Communications in Heat and Mass Transfer 2024:159(B):108096. https://doi.org/10.1016/j.icheatmasstransfer.2024.108096
- Rogowski M., Andrzejczyk R. Recent advances of selected passive heat transfer intensification methods for phase change material-based latent heat energy storage units: A review. International Communications in Heat and Mass Transfer 2023:144:106795. https://doi.org/10.1016/j.icheatmasstransfer.2023.106795
- Zarei M., Vahidhosseini S. M., Rashidi S., Rafee R., Yan W. M. Review on the efficiency enhancement of solar- assisted heat pumps using nano-enhanced phase change materials (NEPCM). Journal of Energy Storage 2025:114(B):115804. https://doi.org/10.1016/j.est.2025.115804
- Katoch A., Abdul Razak F., Suresh A., Bibin B. S., Gundabattini E., Yusoff Mohd. Z. Performance of Nanoparticles in Refrigeration Systems: A Review. Journal of Nanofluids 2022:11(4):469–486. https://doi.org/10.1166/jon.2022.1809
- Dhaidan N. S., Kokz S. A., Rashid F. L., Hussein A. K., Younis O., Al-Mousawi F. N. Review of solidification of phase change materials dispersed with nanoparticles in different containers. Journal of Energy Storage 2022:51:104271. https://doi.org/10.1016/j.est.2022.104271
- Rashid F. L., Mohammed H. I., Dulaimi A., Al-Obaidi M. A., Talebizadehsardari P., Ahmad S., Ameen A. Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review. Energy Reports 2023:10:3757–3779. https://doi.org/10.1016/j.egyr.2023.10.036
- Dhaidan N. S., Khodadadi J. M. Melting and convection of phase change materials in different shape containers: A review. Renewable and Sustainable Energy Reviews 2015:43:449–477. https://doi.org/10.1016/j.rser.2014.11.017
- Irwan M. A. M., Azwadi C. S. N., Asako Y., Ghaderian J. Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process. Journal of Thermal Analysis and Calorimetry 2020:141(2):669–684. https://doi.org/10.1007/s10973-019-09038-2
- Bu sinnah Z. A. Conventional and nano-enhanced Phase Change Material melting simulation by using Lattice Boltzmann method: A comprehensive review. Energy Reports 2023:9:3745–3754. https://doi.org/10.1016/j.egyr.2023.02.056
- Xiong T., Zheng L., Shah K. W. Nano-enhanced phase change materials (NePCMs): A review of numerical simulations. Applied Thermal Engineering 2020:178:115492. https://doi.org/10.1016/j.applthermaleng.2020.115492
- Abdellatif H. E., Belaadi A., Arshad A., Bourchak M. Modeling and performance analysis of phase change materials in advanced thermal energy storage systems: A comprehensive review. Journal of Energy Storage 2025:121:116517. https://doi.org/10.1016/j.est.2025.116517
- Zsembinszki G., De Simone M., Shirbani M., Siavashi M., Bidabadi M. Phase Change Materials Energy Storage Enhancement Schemes and Implementing the Lattice Boltzmann Method for Simulations: A Review. Energies 2023:16(3):1059. https://doi.org/10.3390/en16031059
- Ferrer G., Barreneche C., Solé A., Juliá J. E., Cabeza L. F. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES). Recent Patents on Nanotechnology 2017:11(2):101–108. https://doi.org/10.2174/187221051102170711151312
- Maghrabie H. M., Elsaid K., Sayed E. T., Radwan A., Abo-Khalil A. G., Rezk H., Abdelkareem M. A., Olabi A. G. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. Journal of Energy Storage 2022:48:103937. https://doi.org/10.1016/j.est.2021.103937
- Al Miaari A., Ali H. M. Recent advances on nano-enhanced phase change materials (NEPCMs) for photovoltaic thermal management and role of machine learning: A review of fundamentals, preparation, characterization, and thermo-physical properties. Journal of Energy Storage 2025:124:116544. https://doi.org/10.1016/j.est.2025.116544
- Tyagi P. K., Kumar R., Said Z. Recent advances on the role of nanomaterials for improving the performance of photovoltaic thermal systems: Trends, challenges and prospective. Nano Energy 2022:93:106834. https://doi.org/10.1016/j.nanoen.2021.106834
- Ansari Z. N., Kushwaha N. Exploring the influence of integrating nano-enhanced phase change material on various solar still systems productivity: A systematic literature review. Desalination 2025:609:118851. https://doi.org/10.1016/j.desal.2025.118851
- Paul U. K., Mohtasim M. S., Kibria M. G., Das B. K. Nano-material based composite phase change materials and nanofluid for solar thermal energy storage applications: Featuring numerical and experimental approaches. Journal of Energy Storage 2024:98(B):113032. https://doi.org/10.1016/j.est.2024.113032
- Bait O. A critical review on triangular pyramid, weir–type, spherical, and hemispherical solar water distiller conceptions. Solar Energy 2024:269:112322. https://doi.org/10.1016/j.solener.2024.112322
- Alawee W. H., Basem A., Mohammed S. A., Majdi H. S., Abdullah A. S., Aldabesh A., Sultan A. J., Amro M. I., Omara Z. M., Essa F. A. Cords wick distillers for water distillation - A comparative review. Results in Engineering 2024:24:102984. https://doi.org/10.1016/j.rineng.2024.102984
- Pareira J., Souza R., Moreira A., Moita A. A Review on the Nanofluids-PCMs Integrated Solutions for Solar Thermal Heat Transfer Enhancement Purposes. Technologies 2023:11(6):166. https://doi.org/10.3390/technologies11060166
- Shoeibi S., Jamil F., Parsa S. M., Mehdi S., Kargarsharifabad H., Mirjalily S. A. A., Guo W., Ngo H. H., Ni B-J., Khiadani. Recent advancements in applications of encapsulated phase change materials for solar energy systems: A state of the art review. Journal of Energy Storage 2024:94:112401. https://doi.org/10.1016/j.est.2024.112401
- Sehrawat R., Sahdev R. K., Tiwari S. Heat storage material: a hope in solar thermal. Environmental Science and Pollution Research 2022:30(5):11175–11198. https://doi.org/10.1007/s11356-022-24552-x
- Paul J., Kadirgama K., Samykano M., Pandey A. K., Tyagi V. V. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. Journal of Energy Storage 2022:45:103415. https://doi.org/10.1016/j.est.2021.103415
- Alhuyi Nazari M., Maleki A., Assad M. E. H., Rosen M. A., Haghighi A., Sharabaty H., Chen L. A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy 2021:228:725–743. https://doi.org/10.1016/j.solener.2021.08.051
- Dubey A., Arora A. Effect of various energy storage phase change materials (PCMs) and nano-enhanced PCMs on the performance of solar stills: A review. Journal of Energy Storage 2024:97(B):112938. https://doi.org/10.1016/j.est.2024.112938
- Hamzat A. K., Pasanaje A. H., Omisanya M. I., Sahin A. Z., Maselugbo A. O., Adediran I. A., Mudashiru L. O., Asmatulu E., Oyetunji O. R., Asmatulu R. Phase change materials in solar energy storage: Recent progress, environmental impact, challenges, and perspectives. Journal of Energy Storage 2025:114(A):115762. https://doi.org/10.1016/j.est.2025.115762
- Naveenkumar R., Ravichandran M., Mohanavel V., Karthick A., Aswin L. S. R. L., Priyanka S. S. H., Kumar S. K., Kumar S. P. Review on phase change materials for solar energy storage applications,” Environmental Science and Pollution Research 2021:29(7):9491–9532. https://doi.org/10.1007/s11356-021-17152-8