References
- Abrishami S., Shirali A., Sharples N., Kartal G. E., Macintyre L., Doustdar O. Textile Recycling and Recovery: An Eco-friendly Perspective on Textile and Garment Industries Challenges. Text. Res. J. 2024:94(23–24):2815–2834. https://doi.org/10.1177/00405175241247806
- Ellen MacArthur Foundation. A new textiles economy: Redesigning fashion’s future. 2017.
- United Nations. The 2030 Agenda for Sustainable Development. [Online]. [Accessed: 20.03.2025]. Available: https://www.un.org/sustainabledevelopment/development-agenda/
- European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A new Circular Economy Action Plan. Brussels, 2020. [Online]. [Accessed: 13.02.2025]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN
- European Union. Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain directives. Official Journal of the European Union, 2018.
- McKinsey & Company. Scaling textile recycling in Europe: Turning waste into value. 2022. [Online]. [Accessed: 17.03.2025]. Available: https://www.mckinsey.com/industries/retail/our-insights/scaling-textile-recycling-in-europe-turning-waste-into-value#/
- European Environment Agency. Management of used and waste textiles in Europe’s circular economy. In EEA Briefing. LU: Publications Office, 2024. [Online]. [Accessed: 18.03.2025]. Available: https://data.europa.eu/doi/10.2800/229868
- Matayeva A., Madsen A. S., Biller P. Evaluation of different fiber impurities on hydrothermal liquefaction of mixed textile waste. Resour. Conserv. Recycl. 2023:190:106833. https://doi.org/10.1016/j.resconrec.2022.106833
- Seifali Abbas-Abadi M. et al. Advancing Textile Waste Recycling: Challenges and Opportunities Across Polymer and Non-Polymer Fiber Types. Polymers 2025:17(5):628. https://doi.org/10.3390/polym17050628
- Lu L. et al. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ. 2023:856:158798. https://doi.org/10.1016/j.scitotenv.2022.158798
- Pensupa N. et al. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. In Chemistry and Chemical Technologies in Waste Valorization, Lin C. S. K., Ed., in Topics in Current Chemistry Collections. Cham: Springer International Publishing, 2017:189–228. https://doi.org/10.1007/978-3-319-90653-9_7
- Shahid M. A., Raza M., Javed M. A., Khan Z., Ali S., Ahmad I. Prospects and challenges of recycling and reusing post-consumer garments: A review. Clean. Eng. Technol. 2024:19:100744. https://doi.org/10.1016/j.clet.2024.100744
- Baloyi R. B., Gbadeyan O. J., Sithole B., Chunilall V. Recent advances in recycling technologies for waste textile fabrics: A review. Text. Res. J. 2024:94(3–4):508–529. https://doi.org/10.1177/00405175231210239
- Wang S., Salmon S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022:3(3):376–403. https://doi.org/10.3390/suschem3030024
- Loo S.-L., Yu E., Hu X. Tackling critical challenges in textile circularity: A review on strategies for recycling cellulose and polyester from blended fabrics. J. Environ. Chem. Eng. 2023:11(5):110482. https://doi.org/10.1016/j.jece.2023.110482
- Andini E., Bhalode P., Gantert E., Sadula S., Vlachos D. G. Chemical recycling of mixed textile waste. Sci. Adv. 2024:10(27):eado6827. https://doi.org/10.1126/sciadv.ado6827
- Patel N., Blumberga D. Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria. Environ. Clim. Technol. 2023:27(1):323–338. https://doi.org/10.2478/rtuect-2023-0025
- Valtere M., et al. The Versatility of the Bioeconomy. Sustainability Aspects of the Use of Bran. Environ. Clim. Technol. 2022:26(1):658–669. https://doi.org/10.2478/rtuect-2022-0050
- Zlaugotne B., Zihare L., Balode L., Kalnbalkite A., Khabdullin A., Blumberga D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028
- Ibáñez-Forés V., Bovea M. D., Pérez-Belis V. A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J. Clean. Prod. 2014:70:259–281. https://doi.org/10.1016/j.jclepro.2014.01.082
- Mertzanakis C., Vlachokostas C., Toufexis C., Michailidou A. V. Closing the Loop between Waste-to-Energy Technologies: A Holistic Assessment Based on Multiple Criteria. Energies 2024:17(12):2971. https://doi.org/10.3390/en17122971
- Levänen J., Uusitalo V., Härri A., Kareinen E., Linnanen L. Innovative recycling or extended use? Comparing the global warming potential of different ownership and end-of-life scenarios for textiles. Environ. Res. Lett. 2021:16(5):054069. https://doi.org/10.1088/1748-9326/abfac3
- Mankins J. C. Technology readiness assessments: A retrospective. Acta Astronaut. 2009:65(9–10):1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058
- Ono S., Tsusaka T. W. Comparative Analysis of Environmental, Economic, and Social Criteria for Plastic Recycling Technology Selection in India, Sri Lanka, Pakistan, and Thailand. Int. J. Sustain. Dev. Plan. 2023:18(8):2461–2471. https://doi.org/10.18280/ijsdp.180817
- Li P., Qian H., Wu J., Chen J. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 2013:185(3):2453–2461. https://doi.org/10.1007/s10661-012-2723-9
- Echeverria C. A., Handoko W., Pahlevani F., Sahajwalla V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J. Clean. Prod. 2019:208:1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227
- Gomez T. S., et al. Development of a myco-material based on textile and agro-industrial waste for thermal insulation. E3S Web Conf. 2024:546:03003. https://doi.org/10.1051/e3sconf/202454603003
- Li M., Luo J., Huang Y., Li X., Yu T., Ge M. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. J. Appl. Polym. Sci. 2014:131(19):app.40857. https://doi.org/10.1002/app.40857
- Sun H., Chen Z., Zhou J., Chen L., Zuo W. Recovery of high-quality terephthalic acid from waste polyester textiles via a neutral hydrolysis method. J. Environ. Chem. Eng. 2024:12(3):112558. https://doi.org/10.1016/j.jece.2024.112558
- Ravikumar D., Mani P., Bernaurdshaw N., Vajiravelu S. Microwave-Induced Chemical Recycling of Colored Polyester Textile Wastes Promoted by Zn[(L)Proline]2, as a Recyclable Homogeneous Catalyst. Waste Biomass Valorization 2024:15(8):4585–4598. https://doi.org/10.1007/s12649-024-02522-3
- Kirstein M., et al. Monomer Recycling and Repolymerization of Post-Consumer Polyester Textiles. Chem. Ing. Tech. 2023:95(8):1290–1296. https://doi.org/10.1002/cite.202200197
- Islam S., Bhat G., Mani S. Life cycle assessment of thermal insulation materials produced from waste textiles. J. Mater. Cycles Waste Manag. 2024:26(2):1071–1085. https://doi.org/10.1007/s10163-023-01882-7
- Hussain A., Goljandin D., Podgursky V., Abbas M. M., Krasnou I. Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications. Adv. Ind. Eng. Polym. Res. 2023:6(3):226–238. https://doi.org/10.1016/j.aiepr.2022.11.001
- Sanchis-Sebastiá M., Ruuth E., Stigsson L., Galbe M., Wallberg O. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis. Waste Manag. 2021:121:248–254. https://doi.org/10.1016/j.wasman.2020.12.024
- Ruuth E., et al. Reclaiming the Value of Cotton Waste Textiles: A New Improved Method to Recycle Cotton Waste Textiles via Acid Hydrolysis. Recycling 2022:7(4):57. https://doi.org/10.3390/recycling7040057
- Cao H., Cobb K., Yatvitskiy M., Wolfe M., Shen H. Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability 2022:14(14):8553. https://doi.org/10.3390/su14148553
- Singh V., Wyatt J., Zoungrana A., Yuan Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling 2022:7(1):10. https://doi.org/10.3390/recycling7010010
- Opálková Šišková A., et al. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. Nanomaterials 2021:12(1):50. https://doi.org/10.3390/nano12010050
- Raj M., Fatima S., Tandon N. Recycled materials as a potential replacement to synthetic sound absorbers: A study on denim shoddy and waste jute fibers. Appl. Acoust. 2020:159:107070. https://doi.org/10.1016/j.apacoust.2019.107070
- Aman, Tonk D., Shokeen K., Singh D. K. Development of fire retarding composite board for fire compartmentation application using waste denim: A review. Mater. Today Proc. 2022:60:259–266. https://doi.org/10.1016/j.matpr.2021.12.513
- Vadivel R., Nirmala M., Raji K., Siddaiah B., Ramamurthy P. Synthesis of highly luminescent carbon dots from postconsumer waste silk cloth and investigation of its electron transfer dynamics with methyl viologen dichloride. J. Indian Chem. Soc. 2021:98(11):100181. https://doi.org/10.1016/j.jics.2021.100181
- Bediako J. K., Wei W., Yun Y.-S. Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. J. Taiwan Inst. Chem. Eng. 2016:63:250–258. https://doi.org/10.1016/j.jtice.2016.03.009
- Zhang J., et al. Fabrication of leather-like yarns using waste leather for textile application. Prog. Org. Coat. 2024:186:108053. https://doi.org/10.1016/j.porgcoat.2023.108053
- Haslinger S., Hummel M., Anghelescu-Hakala A., Määttänen M., Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag. 2019:97:88–96. https://doi.org/10.1016/j.wasman.2019.07.040
- Xia G., et al. Complete recycling and valorization of waste textiles for value-added transparent films via an ionic liquid. J. Environ. Chem. Eng. 2021:9(5):106182. https://doi.org/10.1016/j.jece.2021.106182
- Apostolopoulou-Kalkavoura V., Fijoł N., Lombardo S., Ruiz-Caldas M., Mathew A. P. In Situ Functionalisation and Upcycling of Post-Consumer Textile Blends into 3D Printable Nanocomposite Filaments. Adv. Sustain. Syst. 2024:8(9):2400132. https://doi.org/10.1002/adsu.202400132
- Hu Y., Du C., Pensupa N., Lin C. S. K. Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf. Environ. Prot. 2018:118:133–142. https://doi.org/10.1016/j.psep.2018.06.009
- Mihalyi S., et al. Simultaneous saccharification and fermentation with Weizmannia coagulans for recovery of synthetic fibers and production of lactic acid from blended textile waste. Resour. Conserv. Recycl. 2023:196:107060. https://doi.org/10.1016/j.resconrec.2023.107060
- El Wazna M., El Fatihi M., El Bouari A., Cherkaoui O. Thermo physical characterization of sustainable insulation materials made from textile waste. J. Build. Eng. 2017:12:196–201. https://doi.org/10.1016/j.jobe.2017.06.008
- Çay A., Yanık J., Akduman Ç., Duman G., Ertaş H. Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. J. Clean. Prod. 2020:251:119664. https://doi.org/10.1016/j.jclepro.2019.119664
- Lapa H. M., Martins L. M. D. R. S. p-Xylene Oxidation to Terephthalic Acid: New Trends. Molecules 2023:28(4):1922. https://doi.org/10.3390/molecules28041922
- Guo G., He Y., Jin F., Mašek O., Huang Q. Application of life cycle assessment and machine learning for the production and environmental sustainability assessment of hydrothermal bio-oil. Bioresour. Technol. 2023:379:129027. https://doi.org/10.1016/j.biortech.2023.129027
- Ecoinvent 3.10. Crude ‘petroleum’ oil. RoW market for petroleum.
- Gian M., García-Velásquez C., Van Der Meer Y. Comparative life cycle assessment of the biochemical and thermochemical production routes of biobased terephthalic acid using Miscanthus in the Netherlands. Clean. Environ. Syst. 2022:6:100085. https://doi.org/10.1016/j.cesys.2022.100085
- Arya M., Skrifvars M., Khalili P. Performance and life cycle assessment of composites reinforced with natural fibers and end-of-life textiles. J. Compos. Sci. 2024:8(6):196. https://doi.org/10.3390/jcs8060196
- Ecoinvent 3.10. Glass fibre reinforced plastic, polyamide, injection moulded GLO. Market for glass fibre reinforced plastic, polyamide, injection moulded.
- Luo Y., Selvam E., Vlachos D. G., Ierapetritou M. Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization. ACS Sustain. Chem. Eng. 2023:11(10):4209–4218. https://doi.org/10.1021/acssuschemeng.2c07203
- Volk R., et al. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 2024:205:107579. https://doi.org/10.1016/j.resconrec.2024.107579
- Elsacker E., Vandelook S., Van Wylick A., Ruytinx J., De Laet L., Peeters E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020:725:138431. https://doi.org/10.1016/j.scitotenv.2020.138431
- Panwar N. L., Paul A. S. An overview of recent development in bio-oil upgrading and separation techniques. Environ. Eng. Res. 2020:26(5):200382–0. https://doi.org/10.4491/eer.2020.382
- Valtere M., Bezrucko T., Blumberga D. Analysis of textile circularity potential. Environ. Clim. Technol. 2023:27(1):220–232. https://doi.org/10.2478/rtuect-2023-0017
- Borjan D., Knez Ž., Knez M. Recycling of carbon fiber-reinforced composites – Difficulties and future perspectives. Materials 2021:14(15):4191. https://doi.org/10.3390/ma14154191
- De Fazio D., Boccarusso L., Formisano A., Viscusi A., Durante M. A review on the recycling technologies of fibre-reinforced plastic (FRP) materials used in industrial fields. J. Mar. Sci. Eng. 2023:11(4):851. https://doi.org/10.3390/jmse11040851
- Bahramian M., Yetilmezsoy K. Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy Build. 2020:219:109917. https://doi.org/10.1016/j.enbuild.2020.109917
- Alaneme K. K., et al. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023:83:234–250. https://doi.org/10.1016/j.aej.2023.10.012
- Egan J., Salmon S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl. Sci. 2022:4(1):22. https://doi.org/10.1007/s42452-021-04851-7
- Singh A., et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021:5(9):2479–2503. https://doi.org/10.1016/j.joule.2021.06.015
- Mahmood R., Parshetti G. K., Balasubramanian R. Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy 2016:102:187–198. https://doi.org/10.1016/j.energy.2016.02.042
- Suriani M. J., et al. Critical review of natural fiber reinforced hybrid composites: Processing, properties, applications and cost. Polymers 2021:13(20):3514. https://doi.org/10.3390/polym13203514
- Silicone coated glass fiber woven roving fiberglass reinforced composite material from factory for composite materials. [Online]. [Accessed: 13.01.2025]. Available: https://www.alibaba.com/product-detail/Silicone-Coated-Glass-Fiber-Woven-Roving_60112675930.html
- Hashemi A., Derakhshan G., Alizadeh Pahlavani M. R., Abdi B. Techno-economic analysis of a stand-alone hybrid wind-power fuel-cell grid system: A case study in Shahryar region of Tehran. Environ. Clim. Technol. 2020:24(1):691–705. https://doi.org/10.2478/rtuect-2020-0043
- Alemu D., Tafesse M., Mondal A. K. Mycelium-based composite: The future sustainable biomaterial. Int. J. Biomater. 2022:2022(1). https://doi.org/10.1155/2022/8401528
- Verified Market Reports. Global purified terephthalic acid (PTA) market by type (Type 1, Type 2), by application (Polyester, Polybutylene Terephthalate (PBT)), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/purified-terephthalic-acid-pta-market/
- Verified Market Reports. Global bio-oil market by type (Bioethanol, Biodiesel), by application (Industrial fuels, Transportation fuels), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/bio-oil-market/
- Starits Research. Construction composites market size, share & trends analysis report. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-market
- Starits Research. Construction Composites Market Size, Share & Trends Analysis Report by Resin. Forecasts, 2024–2032. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-market
- GVR. Insulation Market Size, Share & Trends Analysis Report by Product (Glass Wool, Mineral Wool, EPS, XPS, CMS Fibers), By End-use (Construction, Industrial, HVAC & OEM), By Region, And Segment Forecasts, 2024–2030. [Online]. [Accessed: 18.12.2024]. Available: https://www.grandviewresearch.com/industry-analysis/insulation-market
- FORTUNE. Polyethylene Terephthalate (PET) Market Size, Share & Industry Analysis, By Type (Virgin and Recycled), Application (Rigid Packaging, Film, Sheets & Straps, and Others), and Regional Forecast, 2024–2032. [Online]. [Accessed: 20.12.2024]. Available: https://www.fortunebusinessinsights.com/industry-reports/polyethylene-terephthalate-pet-market-101743
- DATAINTELO. Recycled Cotton Yarn Market. [Online]. [Accessed: 21.12.2024]. Available: https://dataintelo.com/report/global-recycled-cotton-yarn-market
- Matayeva A., Biller P. Hydrothermal liquefaction of post-consumer mixed textile waste for recovery of bio-oil and terephthalic acid. Resour. Conserv. Recycl. 2022:185:106502. https://doi.org/10.1016/j.resconrec.2022.106502
- Sulochani R. M. N., Jayasinghe R. A., Priyadarshana G., Nilmini A. H. L. R., Ashokcline M., Dharmaratne P. D. Waste-based composites using post-industrial textile waste and packaging waste from the textile manufacturing industry for non-structural applications. Sustain. Chem. Environ. 2024:8:100163. https://doi.org/10.1016/j.scenv.2024.100163
- Mohan S., Thilagavathi G., Rajkhowa R. Development of micro dust reinforced composite for building applications. J. Clean. Prod. 2024:470:143244. https://doi.org/10.1016/j.jclepro.2024.143244
- Kamble Z., Behera B. K. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr. Build. Mater. 2021:284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800
- Rakhsh Mahpour A., Ventura H., Ardanuy M., Rosell J. R., Claramunt J. The effect of fibres and carbonation conditions on the mechanical properties and microstructure of lime/flax composites. Cem. Concr. Compos. 2023:138:104981. https://doi.org/10.1016/j.cemconcomp.2023.104981
- Suthatho A., Rattanawongkun P., Tawichai N., Tanpichai S., Boonmahitthisud A., Soykeabkaew N. Low-density all-cellulose composites made from cotton textile waste with promising thermal insulation and acoustic absorption properties. ACS Appl. Polym. Mater. 2024:6(1):390–397. https://doi.org/10.1021/acsapm.3c02076
- Kamble Z., Behera B. K. Fabrication and performance evaluation of waste cotton and polyester fiber-reinforced green composites for building and construction applications. Polym. Compos. 2021:42(6):3025–3037. https://doi.org/10.1002/pc.26036
- Dev B., Rahman M. A., Tazrin T., Islam M. S., Datta A., Rahman M. Z. Investigation of mechanical properties of nonwoven recycled cotton/PET fiber-reinforced polyester hybrid composites. Macromol. Mater. Eng. 2024:309(6):2400020. https://doi.org/10.1002/mame.202400020
- Zhou W., Huang H., Du S., Wang Q., He J., Cui S. Facile fabrication of polyester filament fabric with highly and durable hydrophilic surface by microwave-assisted glycolysis. J. Appl. Polym. Sci. 2016:133(40):app.44069. https://doi.org/10.1002/app.44069
- Ruiz A., Cogdell C., Mak J., Rowe A., Wan S., La Saponara V. Valorization and biorefinery of local agricultural and textile wastes through mycelium composites for structural applications. Res. Dir. Biotechnol. Des. 2024:2:e10. https://doi.org/10.1017/btd.2024.8
- Saini R., Kaur G., Brar S. K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2024:15(4):683–689. https://doi.org/10.1080/21501203.2023.2278308
- Jiang L., Walczyk D., McIntyre G. A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. J. Manuf. Sci. Eng. 2017:139(2):021014. https://doi.org/10.1115/1.4034278
- Jiang L., Walczyk D., McIntyre G., Bucinell R., Li B. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 2019:207:123–135. https://doi.org/10.1016/j.jclepro.2018.09.255
- Jiang L., Walczyk D., McIntyre G., Bucinell R., Tudryn G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017:28:50–59. https://doi.org/10.1016/j.jmapro.2017.04.029
- Jiang L., Walczyk D. F., Li B. Modeling of glue penetration into natural fiber reinforcements by roller infusion. J. Manuf. Sci. Eng. 2018:140(4):041006. https://doi.org/10.1115/1.4038514
- Nagappan S., et al. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review. Fuel 2021:285:119053. https://doi.org/10.1016/j.fuel.2020.119053
- InsulationGo. What is thermal conductivity? [Online]. [Accessed: 16.01.2024]. Available: https://insulationgo.co.uk/thermal-conductivity/
- Lowry P. P., Wagner K. A. Hydrothermal liquefaction treatment hazard analysis report. PNNL--24219 Rev 3, 1406834. Sep. 2016. https://doi.org/10.2172/1406834
- Asmatulu E., Alonayni A., Alamir M. Safety concerns in composite manufacturing and machining. In: Naguib H. E., ed. Behavior and Mechanics of Multifunctional Materials and Composites XII. Denver, United States: SPIE; Mar. 2018:68. https://doi.org/10.1117/12.2296707
- Beigzadeh Z., Pourhassan B., Kalantary S., Golbabaei F. Occupational exposure to wood dust and risk of nasopharyngeal cancer: A systematic review and meta-analysis. Environ. Res. 2019:171:170–176. https://doi.org/10.1016/j.envres.2018.12.022
- European Chemicals Agency (ECHA). Ethane-1,2-diol. [Online]. [Accessed: 19.01.2025]. https://echa.europa.eu/lv/substance-information/-/substanceinfo/100.003.159
- Balaeș T., Radu B.-M., Tănase C. Mycelium-composite materials – A promising alternative to plastics? J. Fungi 2023:9(2):210. https://doi.org/10.3390/jof9020210
- Baxi S. N., et al. Exposure and health effects of fungi on humans. J. Allergy Clin. Immunol. Pract. 2016:4(3):396–404. https://doi.org/10.1016/j.jaip.2016.01.008
- Higgins C., Margot H., Warnquist S., Obeysekare E., Mehta K. Mushroom cultivation in the developing world: A comparison of cultivation technologies. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC). San Jose, 2017:1–7