Have a personal or library account? Click to login
Recycling of Mixed Post-Consumer Textiles: Opportunities for Sustainable Product Development Cover

Recycling of Mixed Post-Consumer Textiles: Opportunities for Sustainable Product Development

Open Access
|Jul 2025

References

  1. Abrishami S., Shirali A., Sharples N., Kartal G. E., Macintyre L., Doustdar O. Textile Recycling and Recovery: An Eco-friendly Perspective on Textile and Garment Industries Challenges. Text. Res. J. 2024:94(23–24):2815–2834. https://doi.org/10.1177/00405175241247806">https://doi.org/10.1177/00405175241247806
  2. Ellen MacArthur Foundation. A new textiles economy: Redesigning fashion’s future. 2017.
  3. United Nations. The 2030 Agenda for Sustainable Development. [Online]. [Accessed: 20.03.2025]. Available: https://www.un.org/sustainabledevelopment/development-agenda/
  4. European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A new Circular Economy Action Plan. Brussels, 2020. [Online]. [Accessed: 13.02.2025]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN
  5. European Union. Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain directives. Official Journal of the European Union, 2018.
  6. McKinsey & Company. Scaling textile recycling in Europe: Turning waste into value. 2022. [Online]. [Accessed: 17.03.2025]. Available: https://www.mckinsey.com/industries/retail/our-insights/scaling-textile-recycling-in-europe-turning-waste-into-value#/
  7. European Environment Agency. Management of used and waste textiles in Europe’s circular economy. In EEA Briefing. LU: Publications Office, 2024. [Online]. [Accessed: 18.03.2025]. Available: https://data.europa.eu/doi/10.2800/229868
  8. Matayeva A., Madsen A. S., Biller P. Evaluation of different fiber impurities on hydrothermal liquefaction of mixed textile waste. Resour. Conserv. Recycl. 2023:190:106833. https://doi.org/10.1016/j.resconrec.2022.106833">https://doi.org/10.1016/j.resconrec.2022.106833
  9. Seifali Abbas-Abadi M. et al. Advancing Textile Waste Recycling: Challenges and Opportunities Across Polymer and Non-Polymer Fiber Types. Polymers 2025:17(5):628. https://doi.org/10.3390/polym17050628">https://doi.org/10.3390/polym17050628
  10. Lu L. et al. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ. 2023:856:158798. https://doi.org/10.1016/j.scitotenv.2022.158798">https://doi.org/10.1016/j.scitotenv.2022.158798
  11. Pensupa N. et al. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. In Chemistry and Chemical Technologies in Waste Valorization, Lin C. S. K., Ed., in Topics in Current Chemistry Collections. Cham: Springer International Publishing, 2017:189–228. https://doi.org/10.1007/978-3-319-90653-9_7">https://doi.org/10.1007/978-3-319-90653-9_7
  12. Shahid M. A., Raza M., Javed M. A., Khan Z., Ali S., Ahmad I. Prospects and challenges of recycling and reusing post-consumer garments: A review. Clean. Eng. Technol. 2024:19:100744. https://doi.org/10.1016/j.clet.2024.100744">https://doi.org/10.1016/j.clet.2024.100744
  13. Baloyi R. B., Gbadeyan O. J., Sithole B., Chunilall V. Recent advances in recycling technologies for waste textile fabrics: A review. Text. Res. J. 2024:94(3–4):508–529. https://doi.org/10.1177/00405175231210239">https://doi.org/10.1177/00405175231210239
  14. Wang S., Salmon S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022:3(3):376–403. https://doi.org/10.3390/suschem3030024">https://doi.org/10.3390/suschem3030024
  15. Loo S.-L., Yu E., Hu X. Tackling critical challenges in textile circularity: A review on strategies for recycling cellulose and polyester from blended fabrics. J. Environ. Chem. Eng. 2023:11(5):110482. https://doi.org/10.1016/j.jece.2023.110482">https://doi.org/10.1016/j.jece.2023.110482
  16. Andini E., Bhalode P., Gantert E., Sadula S., Vlachos D. G. Chemical recycling of mixed textile waste. Sci. Adv. 2024:10(27):eado6827. https://doi.org/10.1126/sciadv.ado6827">https://doi.org/10.1126/sciadv.ado6827
  17. Patel N., Blumberga D. Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria. Environ. Clim. Technol. 2023:27(1):323–338. https://doi.org/10.2478/rtuect-2023-0025">https://doi.org/10.2478/rtuect-2023-0025
  18. Valtere M., et al. The Versatility of the Bioeconomy. Sustainability Aspects of the Use of Bran. Environ. Clim. Technol. 2022:26(1):658–669. https://doi.org/10.2478/rtuect-2022-0050">https://doi.org/10.2478/rtuect-2022-0050
  19. Zlaugotne B., Zihare L., Balode L., Kalnbalkite A., Khabdullin A., Blumberga D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028">https://doi.org/10.2478/rtuect-2020-0028
  20. Ibáñez-Forés V., Bovea M. D., Pérez-Belis V. A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J. Clean. Prod. 2014:70:259–281. https://doi.org/10.1016/j.jclepro.2014.01.082">https://doi.org/10.1016/j.jclepro.2014.01.082
  21. Mertzanakis C., Vlachokostas C., Toufexis C., Michailidou A. V. Closing the Loop between Waste-to-Energy Technologies: A Holistic Assessment Based on Multiple Criteria. Energies 2024:17(12):2971. https://doi.org/10.3390/en17122971">https://doi.org/10.3390/en17122971
  22. Levänen J., Uusitalo V., Härri A., Kareinen E., Linnanen L. Innovative recycling or extended use? Comparing the global warming potential of different ownership and end-of-life scenarios for textiles. Environ. Res. Lett. 2021:16(5):054069. https://doi.org/10.1088/1748-9326/abfac3">https://doi.org/10.1088/1748-9326/abfac3
  23. Mankins J. C. Technology readiness assessments: A retrospective. Acta Astronaut. 2009:65(9–10):1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058">https://doi.org/10.1016/j.actaastro.2009.03.058
  24. Ono S., Tsusaka T. W. Comparative Analysis of Environmental, Economic, and Social Criteria for Plastic Recycling Technology Selection in India, Sri Lanka, Pakistan, and Thailand. Int. J. Sustain. Dev. Plan. 2023:18(8):2461–2471. https://doi.org/10.18280/ijsdp.180817">https://doi.org/10.18280/ijsdp.180817
  25. Li P., Qian H., Wu J., Chen J. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 2013:185(3):2453–2461. https://doi.org/10.1007/s10661-012-2723-9">https://doi.org/10.1007/s10661-012-2723-9
  26. Echeverria C. A., Handoko W., Pahlevani F., Sahajwalla V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J. Clean. Prod. 2019:208:1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227">https://doi.org/10.1016/j.jclepro.2018.10.227
  27. Gomez T. S., et al. Development of a myco-material based on textile and agro-industrial waste for thermal insulation. E3S Web Conf. 2024:546:03003. https://doi.org/10.1051/e3sconf/202454603003">https://doi.org/10.1051/e3sconf/202454603003
  28. Li M., Luo J., Huang Y., Li X., Yu T., Ge M. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. J. Appl. Polym. Sci. 2014:131(19):app.40857. https://doi.org/10.1002/app.40857">https://doi.org/10.1002/app.40857
  29. Sun H., Chen Z., Zhou J., Chen L., Zuo W. Recovery of high-quality terephthalic acid from waste polyester textiles via a neutral hydrolysis method. J. Environ. Chem. Eng. 2024:12(3):112558. https://doi.org/10.1016/j.jece.2024.112558">https://doi.org/10.1016/j.jece.2024.112558
  30. Ravikumar D., Mani P., Bernaurdshaw N., Vajiravelu S. Microwave-Induced Chemical Recycling of Colored Polyester Textile Wastes Promoted by Zn[(L)Proline]2, as a Recyclable Homogeneous Catalyst. Waste Biomass Valorization 2024:15(8):4585–4598. https://doi.org/10.1007/s12649-024-02522-3">https://doi.org/10.1007/s12649-024-02522-3
  31. Kirstein M., et al. Monomer Recycling and Repolymerization of Post-Consumer Polyester Textiles. Chem. Ing. Tech. 2023:95(8):1290–1296. https://doi.org/10.1002/cite.202200197">https://doi.org/10.1002/cite.202200197
  32. Islam S., Bhat G., Mani S. Life cycle assessment of thermal insulation materials produced from waste textiles. J. Mater. Cycles Waste Manag. 2024:26(2):1071–1085. https://doi.org/10.1007/s10163-023-01882-7">https://doi.org/10.1007/s10163-023-01882-7
  33. Hussain A., Goljandin D., Podgursky V., Abbas M. M., Krasnou I. Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications. Adv. Ind. Eng. Polym. Res. 2023:6(3):226–238. https://doi.org/10.1016/j.aiepr.2022.11.001">https://doi.org/10.1016/j.aiepr.2022.11.001
  34. Sanchis-Sebastiá M., Ruuth E., Stigsson L., Galbe M., Wallberg O. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis. Waste Manag. 2021:121:248–254. https://doi.org/10.1016/j.wasman.2020.12.024">https://doi.org/10.1016/j.wasman.2020.12.024
  35. Ruuth E., et al. Reclaiming the Value of Cotton Waste Textiles: A New Improved Method to Recycle Cotton Waste Textiles via Acid Hydrolysis. Recycling 2022:7(4):57. https://doi.org/10.3390/recycling7040057">https://doi.org/10.3390/recycling7040057
  36. Cao H., Cobb K., Yatvitskiy M., Wolfe M., Shen H. Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability 2022:14(14):8553. https://doi.org/10.3390/su14148553">https://doi.org/10.3390/su14148553
  37. Singh V., Wyatt J., Zoungrana A., Yuan Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling 2022:7(1):10. https://doi.org/10.3390/recycling7010010">https://doi.org/10.3390/recycling7010010
  38. Opálková Šišková A., et al. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. Nanomaterials 2021:12(1):50. https://doi.org/10.3390/nano12010050">https://doi.org/10.3390/nano12010050
  39. Raj M., Fatima S., Tandon N. Recycled materials as a potential replacement to synthetic sound absorbers: A study on denim shoddy and waste jute fibers. Appl. Acoust. 2020:159:107070. https://doi.org/10.1016/j.apacoust.2019.107070">https://doi.org/10.1016/j.apacoust.2019.107070
  40. Aman, Tonk D., Shokeen K., Singh D. K. Development of fire retarding composite board for fire compartmentation application using waste denim: A review. Mater. Today Proc. 2022:60:259–266. https://doi.org/10.1016/j.matpr.2021.12.513">https://doi.org/10.1016/j.matpr.2021.12.513
  41. Vadivel R., Nirmala M., Raji K., Siddaiah B., Ramamurthy P. Synthesis of highly luminescent carbon dots from postconsumer waste silk cloth and investigation of its electron transfer dynamics with methyl viologen dichloride. J. Indian Chem. Soc. 2021:98(11):100181. https://doi.org/10.1016/j.jics.2021.100181">https://doi.org/10.1016/j.jics.2021.100181
  42. Bediako J. K., Wei W., Yun Y.-S. Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. J. Taiwan Inst. Chem. Eng. 2016:63:250–258. https://doi.org/10.1016/j.jtice.2016.03.009">https://doi.org/10.1016/j.jtice.2016.03.009
  43. Zhang J., et al. Fabrication of leather-like yarns using waste leather for textile application. Prog. Org. Coat. 2024:186:108053. https://doi.org/10.1016/j.porgcoat.2023.108053">https://doi.org/10.1016/j.porgcoat.2023.108053
  44. Haslinger S., Hummel M., Anghelescu-Hakala A., Määttänen M., Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag. 2019:97:88–96. https://doi.org/10.1016/j.wasman.2019.07.040">https://doi.org/10.1016/j.wasman.2019.07.040
  45. Xia G., et al. Complete recycling and valorization of waste textiles for value-added transparent films via an ionic liquid. J. Environ. Chem. Eng. 2021:9(5):106182. https://doi.org/10.1016/j.jece.2021.106182">https://doi.org/10.1016/j.jece.2021.106182
  46. Apostolopoulou-Kalkavoura V., Fijoł N., Lombardo S., Ruiz-Caldas M., Mathew A. P. In Situ Functionalisation and Upcycling of Post-Consumer Textile Blends into 3D Printable Nanocomposite Filaments. Adv. Sustain. Syst. 2024:8(9):2400132. https://doi.org/10.1002/adsu.202400132">https://doi.org/10.1002/adsu.202400132
  47. Hu Y., Du C., Pensupa N., Lin C. S. K. Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf. Environ. Prot. 2018:118:133–142. https://doi.org/10.1016/j.psep.2018.06.009">https://doi.org/10.1016/j.psep.2018.06.009
  48. Mihalyi S., et al. Simultaneous saccharification and fermentation with Weizmannia coagulans for recovery of synthetic fibers and production of lactic acid from blended textile waste. Resour. Conserv. Recycl. 2023:196:107060. https://doi.org/10.1016/j.resconrec.2023.107060">https://doi.org/10.1016/j.resconrec.2023.107060
  49. El Wazna M., El Fatihi M., El Bouari A., Cherkaoui O. Thermo physical characterization of sustainable insulation materials made from textile waste. J. Build. Eng. 2017:12:196–201. https://doi.org/10.1016/j.jobe.2017.06.008">https://doi.org/10.1016/j.jobe.2017.06.008
  50. Çay A., Yanık J., Akduman Ç., Duman G., Ertaş H. Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. J. Clean. Prod. 2020:251:119664. https://doi.org/10.1016/j.jclepro.2019.119664">https://doi.org/10.1016/j.jclepro.2019.119664
  51. Lapa H. M., Martins L. M. D. R. S. p-Xylene Oxidation to Terephthalic Acid: New Trends. Molecules 2023:28(4):1922. https://doi.org/10.3390/molecules28041922">https://doi.org/10.3390/molecules28041922
  52. Guo G., He Y., Jin F., Mašek O., Huang Q. Application of life cycle assessment and machine learning for the production and environmental sustainability assessment of hydrothermal bio-oil. Bioresour. Technol. 2023:379:129027. https://doi.org/10.1016/j.biortech.2023.129027">https://doi.org/10.1016/j.biortech.2023.129027
  53. Ecoinvent 3.10. Crude ‘petroleum’ oil. RoW market for petroleum.
  54. Gian M., García-Velásquez C., Van Der Meer Y. Comparative life cycle assessment of the biochemical and thermochemical production routes of biobased terephthalic acid using Miscanthus in the Netherlands. Clean. Environ. Syst. 2022:6:100085. https://doi.org/10.1016/j.cesys.2022.100085">https://doi.org/10.1016/j.cesys.2022.100085
  55. Arya M., Skrifvars M., Khalili P. Performance and life cycle assessment of composites reinforced with natural fibers and end-of-life textiles. J. Compos. Sci. 2024:8(6):196. https://doi.org/10.3390/jcs8060196">https://doi.org/10.3390/jcs8060196
  56. Ecoinvent 3.10. Glass fibre reinforced plastic, polyamide, injection moulded GLO. Market for glass fibre reinforced plastic, polyamide, injection moulded.
  57. Luo Y., Selvam E., Vlachos D. G., Ierapetritou M. Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization. ACS Sustain. Chem. Eng. 2023:11(10):4209–4218. https://doi.org/10.1021/acssuschemeng.2c07203">https://doi.org/10.1021/acssuschemeng.2c07203
  58. Volk R., et al. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 2024:205:107579. https://doi.org/10.1016/j.resconrec.2024.107579">https://doi.org/10.1016/j.resconrec.2024.107579
  59. Elsacker E., Vandelook S., Van Wylick A., Ruytinx J., De Laet L., Peeters E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020:725:138431. https://doi.org/10.1016/j.scitotenv.2020.138431">https://doi.org/10.1016/j.scitotenv.2020.138431
  60. Panwar N. L., Paul A. S. An overview of recent development in bio-oil upgrading and separation techniques. Environ. Eng. Res. 2020:26(5):200382–0. https://doi.org/10.4491/eer.2020.382">https://doi.org/10.4491/eer.2020.382
  61. Valtere M., Bezrucko T., Blumberga D. Analysis of textile circularity potential. Environ. Clim. Technol. 2023:27(1):220–232. https://doi.org/10.2478/rtuect-2023-0017">https://doi.org/10.2478/rtuect-2023-0017
  62. Borjan D., Knez Ž., Knez M. Recycling of carbon fiber-reinforced composites – Difficulties and future perspectives. Materials 2021:14(15):4191. https://doi.org/10.3390/ma14154191">https://doi.org/10.3390/ma14154191
  63. De Fazio D., Boccarusso L., Formisano A., Viscusi A., Durante M. A review on the recycling technologies of fibre-reinforced plastic (FRP) materials used in industrial fields. J. Mar. Sci. Eng. 2023:11(4):851. https://doi.org/10.3390/jmse11040851">https://doi.org/10.3390/jmse11040851
  64. Bahramian M., Yetilmezsoy K. Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy Build. 2020:219:109917. https://doi.org/10.1016/j.enbuild.2020.109917">https://doi.org/10.1016/j.enbuild.2020.109917
  65. Alaneme K. K., et al. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023:83:234–250. https://doi.org/10.1016/j.aej.2023.10.012">https://doi.org/10.1016/j.aej.2023.10.012
  66. Egan J., Salmon S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl. Sci. 2022:4(1):22. https://doi.org/10.1007/s42452-021-04851-7">https://doi.org/10.1007/s42452-021-04851-7
  67. Singh A., et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021:5(9):2479–2503. https://doi.org/10.1016/j.joule.2021.06.015">https://doi.org/10.1016/j.joule.2021.06.015
  68. Mahmood R., Parshetti G. K., Balasubramanian R. Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy 2016:102:187–198. https://doi.org/10.1016/j.energy.2016.02.042">https://doi.org/10.1016/j.energy.2016.02.042
  69. Suriani M. J., et al. Critical review of natural fiber reinforced hybrid composites: Processing, properties, applications and cost. Polymers 2021:13(20):3514. https://doi.org/10.3390/polym13203514">https://doi.org/10.3390/polym13203514
  70. Silicone coated glass fiber woven roving fiberglass reinforced composite material from factory for composite materials. [Online]. [Accessed: 13.01.2025]. Available: https://www.alibaba.com/product-detail/Silicone-Coated-Glass-Fiber-Woven-Roving_60112675930.html
  71. Hashemi A., Derakhshan G., Alizadeh Pahlavani M. R., Abdi B. Techno-economic analysis of a stand-alone hybrid wind-power fuel-cell grid system: A case study in Shahryar region of Tehran. Environ. Clim. Technol. 2020:24(1):691–705. https://doi.org/10.2478/rtuect-2020-0043">https://doi.org/10.2478/rtuect-2020-0043
  72. Alemu D., Tafesse M., Mondal A. K. Mycelium-based composite: The future sustainable biomaterial. Int. J. Biomater. 2022:2022(1). https://doi.org/10.1155/2022/8401528">https://doi.org/10.1155/2022/8401528
  73. Verified Market Reports. Global purified terephthalic acid (PTA) market by type (Type 1, Type 2), by application (Polyester, Polybutylene Terephthalate (PBT)), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/purified-terephthalic-acid-pta-market/
  74. Verified Market Reports. Global bio-oil market by type (Bioethanol, Biodiesel), by application (Industrial fuels, Transportation fuels), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/bio-oil-market/
  75. Starits Research. Construction composites market size, share & trends analysis report. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-market
  76. Starits Research. Construction Composites Market Size, Share & Trends Analysis Report by Resin. Forecasts, 2024–2032. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-market
  77. GVR. Insulation Market Size, Share & Trends Analysis Report by Product (Glass Wool, Mineral Wool, EPS, XPS, CMS Fibers), By End-use (Construction, Industrial, HVAC & OEM), By Region, And Segment Forecasts, 2024–2030. [Online]. [Accessed: 18.12.2024]. Available: https://www.grandviewresearch.com/industry-analysis/insulation-market
  78. FORTUNE. Polyethylene Terephthalate (PET) Market Size, Share & Industry Analysis, By Type (Virgin and Recycled), Application (Rigid Packaging, Film, Sheets & Straps, and Others), and Regional Forecast, 2024–2032. [Online]. [Accessed: 20.12.2024]. Available: https://www.fortunebusinessinsights.com/industry-reports/polyethylene-terephthalate-pet-market-101743
  79. DATAINTELO. Recycled Cotton Yarn Market. [Online]. [Accessed: 21.12.2024]. Available: https://dataintelo.com/report/global-recycled-cotton-yarn-market
  80. Matayeva A., Biller P. Hydrothermal liquefaction of post-consumer mixed textile waste for recovery of bio-oil and terephthalic acid. Resour. Conserv. Recycl. 2022:185:106502. https://doi.org/10.1016/j.resconrec.2022.106502">https://doi.org/10.1016/j.resconrec.2022.106502
  81. Sulochani R. M. N., Jayasinghe R. A., Priyadarshana G., Nilmini A. H. L. R., Ashokcline M., Dharmaratne P. D. Waste-based composites using post-industrial textile waste and packaging waste from the textile manufacturing industry for non-structural applications. Sustain. Chem. Environ. 2024:8:100163. https://doi.org/10.1016/j.scenv.2024.100163">https://doi.org/10.1016/j.scenv.2024.100163
  82. Mohan S., Thilagavathi G., Rajkhowa R. Development of micro dust reinforced composite for building applications. J. Clean. Prod. 2024:470:143244. https://doi.org/10.1016/j.jclepro.2024.143244">https://doi.org/10.1016/j.jclepro.2024.143244
  83. Kamble Z., Behera B. K. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr. Build. Mater. 2021:284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800">https://doi.org/10.1016/j.conbuildmat.2021.122800
  84. Rakhsh Mahpour A., Ventura H., Ardanuy M., Rosell J. R., Claramunt J. The effect of fibres and carbonation conditions on the mechanical properties and microstructure of lime/flax composites. Cem. Concr. Compos. 2023:138:104981. https://doi.org/10.1016/j.cemconcomp.2023.104981">https://doi.org/10.1016/j.cemconcomp.2023.104981
  85. Suthatho A., Rattanawongkun P., Tawichai N., Tanpichai S., Boonmahitthisud A., Soykeabkaew N. Low-density all-cellulose composites made from cotton textile waste with promising thermal insulation and acoustic absorption properties. ACS Appl. Polym. Mater. 2024:6(1):390–397. https://doi.org/10.1021/acsapm.3c02076">https://doi.org/10.1021/acsapm.3c02076
  86. Kamble Z., Behera B. K. Fabrication and performance evaluation of waste cotton and polyester fiber-reinforced green composites for building and construction applications. Polym. Compos. 2021:42(6):3025–3037. https://doi.org/10.1002/pc.26036">https://doi.org/10.1002/pc.26036
  87. Dev B., Rahman M. A., Tazrin T., Islam M. S., Datta A., Rahman M. Z. Investigation of mechanical properties of nonwoven recycled cotton/PET fiber-reinforced polyester hybrid composites. Macromol. Mater. Eng. 2024:309(6):2400020. https://doi.org/10.1002/mame.202400020">https://doi.org/10.1002/mame.202400020
  88. Zhou W., Huang H., Du S., Wang Q., He J., Cui S. Facile fabrication of polyester filament fabric with highly and durable hydrophilic surface by microwave-assisted glycolysis. J. Appl. Polym. Sci. 2016:133(40):app.44069. https://doi.org/10.1002/app.44069">https://doi.org/10.1002/app.44069
  89. Ruiz A., Cogdell C., Mak J., Rowe A., Wan S., La Saponara V. Valorization and biorefinery of local agricultural and textile wastes through mycelium composites for structural applications. Res. Dir. Biotechnol. Des. 2024:2:e10. https://doi.org/10.1017/btd.2024.8">https://doi.org/10.1017/btd.2024.8
  90. Saini R., Kaur G., Brar S. K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2024:15(4):683–689. https://doi.org/10.1080/21501203.2023.2278308">https://doi.org/10.1080/21501203.2023.2278308
  91. Jiang L., Walczyk D., McIntyre G. A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. J. Manuf. Sci. Eng. 2017:139(2):021014. https://doi.org/10.1115/1.4034278">https://doi.org/10.1115/1.4034278
  92. Jiang L., Walczyk D., McIntyre G., Bucinell R., Li B. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 2019:207:123–135. https://doi.org/10.1016/j.jclepro.2018.09.255">https://doi.org/10.1016/j.jclepro.2018.09.255
  93. Jiang L., Walczyk D., McIntyre G., Bucinell R., Tudryn G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017:28:50–59. https://doi.org/10.1016/j.jmapro.2017.04.029">https://doi.org/10.1016/j.jmapro.2017.04.029
  94. Jiang L., Walczyk D. F., Li B. Modeling of glue penetration into natural fiber reinforcements by roller infusion. J. Manuf. Sci. Eng. 2018:140(4):041006. https://doi.org/10.1115/1.4038514">https://doi.org/10.1115/1.4038514
  95. Nagappan S., et al. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review. Fuel 2021:285:119053. https://doi.org/10.1016/j.fuel.2020.119053">https://doi.org/10.1016/j.fuel.2020.119053
  96. InsulationGo. What is thermal conductivity? [Online]. [Accessed: 16.01.2024]. Available: https://insulationgo.co.uk/thermal-conductivity/
  97. Lowry P. P., Wagner K. A. Hydrothermal liquefaction treatment hazard analysis report. PNNL--24219 Rev 3, 1406834. Sep. 2016. https://doi.org/10.2172/1406834">https://doi.org/10.2172/1406834
  98. Asmatulu E., Alonayni A., Alamir M. Safety concerns in composite manufacturing and machining. In: Naguib H. E., ed. Behavior and Mechanics of Multifunctional Materials and Composites XII. Denver, United States: SPIE; Mar. 2018:68. https://doi.org/10.1117/12.2296707">https://doi.org/10.1117/12.2296707
  99. Beigzadeh Z., Pourhassan B., Kalantary S., Golbabaei F. Occupational exposure to wood dust and risk of nasopharyngeal cancer: A systematic review and meta-analysis. Environ. Res. 2019:171:170–176. https://doi.org/10.1016/j.envres.2018.12.022">https://doi.org/10.1016/j.envres.2018.12.022
  100. European Chemicals Agency (ECHA). Ethane-1,2-diol. [Online]. [Accessed: 19.01.2025]. https://echa.europa.eu/lv/substance-information/-/substanceinfo/100.003.159
  101. Balaeș T., Radu B.-M., Tănase C. Mycelium-composite materials – A promising alternative to plastics? J. Fungi 2023:9(2):210. https://doi.org/10.3390/jof9020210">https://doi.org/10.3390/jof9020210
  102. Baxi S. N., et al. Exposure and health effects of fungi on humans. J. Allergy Clin. Immunol. Pract. 2016:4(3):396–404. https://doi.org/10.1016/j.jaip.2016.01.008">https://doi.org/10.1016/j.jaip.2016.01.008
  103. Higgins C., Margot H., Warnquist S., Obeysekare E., Mehta K. Mushroom cultivation in the developing world: A comparison of cultivation technologies. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC). San Jose, 2017:1–7
DOI: https://doi.org/10.2478/rtuect-2025-0023 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 323 - 343
Submitted on: Mar 24, 2025
Accepted on: Jun 12, 2025
Published on: Jul 8, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Megija Valtere, Tereza Bezrucko, Veronika Liberova, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.