Have a personal or library account? Click to login
Potential of Wind-Hydrogen (Power-to-X) Energy Systems in Latvia Cover

Potential of Wind-Hydrogen (Power-to-X) Energy Systems in Latvia

Open Access
|Jun 2025

References

  1. Béres R., Nijs W., Boldrini A., Van den Broek M. Will hydrogen and synthetic fuels energize our future? Their role in Europe’s climate-neutral energy system and power system dynamics. Applied Energy 2024:375:124053. https://doi.org/10.1016/j.apenergy.2024.124053">https://doi.org/10.1016/j.apenergy.2024.124053
  2. Genovese M., Schlüter A., Scionti E., Piraino F., Corigliano O., Fragiacomo P. Power-to-hydrogen and hydrogento-X energy systems for the industry of the future in Europe. Int J Hydrogen Energy 2023:48(44):16545–16568. https://doi.org/10.1016/j.ijhydene.2023.01.194">https://doi.org/10.1016/j.ijhydene.2023.01.194
  3. Roucham B., Lefilef A., Zaghdoud O., Mohammed K. S. The evolution of green hydrogen in renewable energy research: Insights from a bibliometric perspective. Energy Reports 2025:13:576–593. https://doi.org/10.1016/j.egyr.2024.12.037">https://doi.org/10.1016/j.egyr.2024.12.037
  4. Decourt B. Weaknesses and drivers for power-to-X diffusion in Europe. Insights from technological innovation system analysis. Int J Hydrogen Energy 2019:44(33):17411–17430. https://doi.org/10.1016/j.ijhydene.2019.05.149">https://doi.org/10.1016/j.ijhydene.2019.05.149
  5. Henry A., McStay D., Rooney D., Robertson P., Foley A. Techno-economic analysis to identify the optimal conditions for green hydrogen production. Energy Convers Manag 2023:291:117230. https://doi.org/10.1016/j.enconman.2023.117230">https://doi.org/10.1016/j.enconman.2023.117230
  6. Bade S. O., Gyimah E., Tomomewo O., Josephs R., Omojiba T., Aluah R. Assessing the Potential of Large-Scale Geological Hydrogen Storage in North Dakota’s Bakken Formation: A Case Study Integrating Wind-Powered Hydrogen Production. Renewable Energy 2024:237(D):121906. https://doi.org/10.1016/j.renene.2024.121906">https://doi.org/10.1016/j.renene.2024.121906
  7. Hassan Q. et al. Mapping Europe renewable energy landscape: Insights into solar, wind, hydro, and green hydrogen production. Technology in Society 2024:77:102535. https://doi.org/10.1016/j.techsoc.2024.102535">https://doi.org/10.1016/j.techsoc.2024.102535
  8. Green R., Hu H., Vasilakos N. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity.
  9. Nord Pool AS. Nord Pool Latvia elektrības cenas. [Online]. [Accessed 05.12.2024]. Available: https://lv.nordpool.info/?utm_source=chatgpt.com
  10. Awad M. et al. A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alexandria Engineering Journal 2024:87:213–239. https://doi.org/10.1016/j.aej.2023.12.032">https://doi.org/10.1016/j.aej.2023.12.032
  11. Haoran C., Xia Y., Wei W., Yongzhi Z., Bo Z., Leiqi Z. Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources. Int J Hydrogen Energy 2024:54:700–712. https://doi.org/10.1016/j.ijhydene.2023.08.324">https://doi.org/10.1016/j.ijhydene.2023.08.324
  12. Ursúa A., Gandía L. M., Sanchis P. Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE 2012:100(2):410–426. https://doi.org/10.1109/JPROC.2011.2156750">https://doi.org/10.1109/JPROC.2011.2156750
  13. Tüysüz H. Alkaline Water Electrolysis for Green Hydrogen Production. Accounts of Chemical Research 2024:57(4). https://doi.org/10.1021/acs.accounts.3c00709">https://doi.org/10.1021/acs.accounts.3c00709
  14. Araújo H. F., Gómez J. A., Santos D. M. F. Proton-Exchange Membrane Electrolysis for Green Hydrogen Production: Fundamentals, Cost Breakdown, and Strategies to Minimize Platinum-Group Metal Content in Hydrogen Evolution Reaction Electrocatalysts. Catalysts 2024:14(12):845. https://doi.org/10.3390/catal14120845">https://doi.org/10.3390/catal14120845
  15. Gómez J., Castro R. Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System. Energies 2024:17(13):3110. https://doi.org/10.3390/en17133110">https://doi.org/10.3390/en17133110
  16. Tumse S., Bilgili M., Yildirim A., Sahin B. Comparative Analysis of Global Onshore and Offshore Wind Energy Characteristics and Potentials. Sustainability 2024:16(15):6614. https://doi.org/10.3390/su16156614">https://doi.org/10.3390/su16156614
  17. Twin A. Capital Recovery: Definition, Analysis, and Uses. [Online]. [Accessed: 18.02.2025]. Available: https://www.investopedia.com/terms/c/capital-recovery.asp
  18. Wiser R., Bolinger M., Lantz E. Assessing wind power operating costs in the United States: Results from a survey of wind industry experts. Renewable Energy Focus 2019:30:46–57. https://doi.org/10.1016/j.ref.2019.05.003">https://doi.org/10.1016/j.ref.2019.05.003
  19. Al-Khayat M., AL-Rasheedi M. A new method for estimating the annual energy production of wind turbines in hot environments. Renewable and Sustainable Energy Reviews 2024:195:114343. https://doi.org/10.1016/j.rser.2024.114343">https://doi.org/10.1016/j.rser.2024.114343
  20. European Hydrogen Observatory. Levelised Cost of Hydrogen (LCOH) Calculator Manual. 2024.
  21. Vestas wind systems A/S, “V136-4.2 MWTM.” [Online]. [Accessed 20.02.2025]. Available: https://www.vestas.com/en/energy-solutions/onshore-wind-turbines/4-mw-platform/V136-4-2-MW
  22. Blackwood M. Maximum Efficiency of a Wind Turbine. Undergraduate Journal of Mathematical Modeling: One + Two 2016:6(2). https://doi.org/10.5038/2326-3652.6.2.4865">https://doi.org/10.5038/2326-3652.6.2.4865
  23. International Renewable Energy Agency. Renewable power generation costs in 2023. 2024. [Online]. [Accessed: 24.02.2025]. Available: www.irena.org
  24. Spilve Aeroport. SPILVE.LV. International standard atmosphere. [Online]. [Accessed 25.02.2025]. Available: https://www.spilve.lv/isa.php?lang=en
  25. Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093">https://doi.org/10.2478/rtuect-2021-0093
  26. U.S. Department of Energy. Wind Turbines: The Bigger, the Better. Department of Energy. [Online]. [Accessed: 09.03.2025]. Available: https://www.energy.gov/eere/articles/wind-turbines-bigger-better
  27. European Hydrogen Observatory. Levelised Cost of Hydrogen Calculator. European Hydrogen Observatory. [Online]. [Accessed 25.02.2025]. Available: https://observatory.clean-hydrogen.europa.eu/tools-reports/levelisedcost-hydrogen-calculator
  28. Sunfire AG. The Electrolysis Specialist. 2024.
  29. Barwe S. et al. Acknowledgements Colophon.
  30. Deloitte Monitor. Fueling the future of mobility: hydrogen electrolyzers. 2021.
  31. Jiménez-Martín G., Judez X., Aguado M., Garbayo I. Techno-economic assessment of MW-scale solid oxide electrolysis hydrogen production plant: Integrating possibilities in Spain. Int J Hydrogen Energy 2025:142:627–641. https://doi.org/10.1016/j.ijhydene.2024.12.239">https://doi.org/10.1016/j.ijhydene.2024.12.239
  32. Clean Hydrogen partnership. Hydrogen cost and sales prices. H2Valleys. [Online]. [Accessed 28.02.2025]. Available: https://h2v.eu/analysis/statistics/financing/hydrogen-cost-and-sales-prices
  33. Business Analytiq. Oxygen price index – businessanalytiq. [Online]. [Accessed 28.02.2025]. Available: https://businessanalytiq.com/procurementanalytics/index/oxygen-price-index/
  34. EUROSTAT. Electricity price statistics – Statistics Explained. [Online]. [Accessed 09.03.2025]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics
  35. Global Market Insights Inc., Electrolyzer Market Size, Growth Opportunity 2025–2034. [Online]. [Accessed 09.03.2025]. Available: https://www.gminsights.com/industry-analysis/electrolyzer-market
  36. Zhang J. et al. Comparison of onshore/offshore wind power hydrogen production through water electrolysis by life cycle assessment. Sustainable Energy Technologies and Assessments 2023:60:103515. https://doi.org/10.1016/j.seta.2023.103515">https://doi.org/10.1016/j.seta.2023.103515
DOI: https://doi.org/10.2478/rtuect-2025-0019 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 272 - 284
Submitted on: Mar 17, 2025
Accepted on: May 2, 2025
Published on: Jun 28, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Anastasija Treimane, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.