Béres R., Nijs W., Boldrini A., Van den Broek M. Will hydrogen and synthetic fuels energize our future? Their role in Europe’s climate-neutral energy system and power system dynamics. Applied Energy 2024:375:124053. https://doi.org/10.1016/j.apenergy.2024.124053">https://doi.org/10.1016/j.apenergy.2024.124053
Genovese M., Schlüter A., Scionti E., Piraino F., Corigliano O., Fragiacomo P. Power-to-hydrogen and hydrogento-X energy systems for the industry of the future in Europe. Int J Hydrogen Energy 2023:48(44):16545–16568. https://doi.org/10.1016/j.ijhydene.2023.01.194">https://doi.org/10.1016/j.ijhydene.2023.01.194
Roucham B., Lefilef A., Zaghdoud O., Mohammed K. S. The evolution of green hydrogen in renewable energy research: Insights from a bibliometric perspective. Energy Reports 2025:13:576–593. https://doi.org/10.1016/j.egyr.2024.12.037">https://doi.org/10.1016/j.egyr.2024.12.037
Decourt B. Weaknesses and drivers for power-to-X diffusion in Europe. Insights from technological innovation system analysis. Int J Hydrogen Energy 2019:44(33):17411–17430. https://doi.org/10.1016/j.ijhydene.2019.05.149">https://doi.org/10.1016/j.ijhydene.2019.05.149
Henry A., McStay D., Rooney D., Robertson P., Foley A. Techno-economic analysis to identify the optimal conditions for green hydrogen production. Energy Convers Manag 2023:291:117230. https://doi.org/10.1016/j.enconman.2023.117230">https://doi.org/10.1016/j.enconman.2023.117230
Bade S. O., Gyimah E., Tomomewo O., Josephs R., Omojiba T., Aluah R. Assessing the Potential of Large-Scale Geological Hydrogen Storage in North Dakota’s Bakken Formation: A Case Study Integrating Wind-Powered Hydrogen Production. Renewable Energy 2024:237(D):121906. https://doi.org/10.1016/j.renene.2024.121906">https://doi.org/10.1016/j.renene.2024.121906
Hassan Q. et al. Mapping Europe renewable energy landscape: Insights into solar, wind, hydro, and green hydrogen production. Technology in Society 2024:77:102535. https://doi.org/10.1016/j.techsoc.2024.102535">https://doi.org/10.1016/j.techsoc.2024.102535
Awad M. et al. A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alexandria Engineering Journal 2024:87:213–239. https://doi.org/10.1016/j.aej.2023.12.032">https://doi.org/10.1016/j.aej.2023.12.032
Haoran C., Xia Y., Wei W., Yongzhi Z., Bo Z., Leiqi Z. Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources. Int J Hydrogen Energy 2024:54:700–712. https://doi.org/10.1016/j.ijhydene.2023.08.324">https://doi.org/10.1016/j.ijhydene.2023.08.324
Ursúa A., Gandía L. M., Sanchis P. Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE 2012:100(2):410–426. https://doi.org/10.1109/JPROC.2011.2156750">https://doi.org/10.1109/JPROC.2011.2156750
Tüysüz H. Alkaline Water Electrolysis for Green Hydrogen Production. Accounts of Chemical Research 2024:57(4). https://doi.org/10.1021/acs.accounts.3c00709">https://doi.org/10.1021/acs.accounts.3c00709
Araújo H. F., Gómez J. A., Santos D. M. F. Proton-Exchange Membrane Electrolysis for Green Hydrogen Production: Fundamentals, Cost Breakdown, and Strategies to Minimize Platinum-Group Metal Content in Hydrogen Evolution Reaction Electrocatalysts. Catalysts 2024:14(12):845. https://doi.org/10.3390/catal14120845">https://doi.org/10.3390/catal14120845
Gómez J., Castro R. Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System. Energies 2024:17(13):3110. https://doi.org/10.3390/en17133110">https://doi.org/10.3390/en17133110
Tumse S., Bilgili M., Yildirim A., Sahin B. Comparative Analysis of Global Onshore and Offshore Wind Energy Characteristics and Potentials. Sustainability 2024:16(15):6614. https://doi.org/10.3390/su16156614">https://doi.org/10.3390/su16156614
Twin A. Capital Recovery: Definition, Analysis, and Uses. [Online]. [Accessed: 18.02.2025]. Available: https://www.investopedia.com/terms/c/capital-recovery.asp
Wiser R., Bolinger M., Lantz E. Assessing wind power operating costs in the United States: Results from a survey of wind industry experts. Renewable Energy Focus 2019:30:46–57. https://doi.org/10.1016/j.ref.2019.05.003">https://doi.org/10.1016/j.ref.2019.05.003
Al-Khayat M., AL-Rasheedi M. A new method for estimating the annual energy production of wind turbines in hot environments. Renewable and Sustainable Energy Reviews 2024:195:114343. https://doi.org/10.1016/j.rser.2024.114343">https://doi.org/10.1016/j.rser.2024.114343
Blackwood M. Maximum Efficiency of a Wind Turbine. Undergraduate Journal of Mathematical Modeling: One + Two 2016:6(2). https://doi.org/10.5038/2326-3652.6.2.4865">https://doi.org/10.5038/2326-3652.6.2.4865
Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093">https://doi.org/10.2478/rtuect-2021-0093
U.S. Department of Energy. Wind Turbines: The Bigger, the Better. Department of Energy. [Online]. [Accessed: 09.03.2025]. Available: https://www.energy.gov/eere/articles/wind-turbines-bigger-better
Jiménez-Martín G., Judez X., Aguado M., Garbayo I. Techno-economic assessment of MW-scale solid oxide electrolysis hydrogen production plant: Integrating possibilities in Spain. Int J Hydrogen Energy 2025:142:627–641. https://doi.org/10.1016/j.ijhydene.2024.12.239">https://doi.org/10.1016/j.ijhydene.2024.12.239
Zhang J. et al. Comparison of onshore/offshore wind power hydrogen production through water electrolysis by life cycle assessment. Sustainable Energy Technologies and Assessments 2023:60:103515. https://doi.org/10.1016/j.seta.2023.103515">https://doi.org/10.1016/j.seta.2023.103515