Have a personal or library account? Click to login
5th Generation District Heating and Cooling (5GDHC) Systems: Improving the Efficiency of a Booster Heat Pump Cover

5th Generation District Heating and Cooling (5GDHC) Systems: Improving the Efficiency of a Booster Heat Pump

Open Access
|Jun 2025

References

  1. Gong Y., Ma G., Jiang Y., Wang L. Research progress on the fifth-generation district heating system based on heat pump technology. Journal of Building Engineering 2023:71:106533. https://doi.org/10.1016/j.jobe.2023.106533">https://doi.org/10.1016/j.jobe.2023.106533
  2. Viesi D., Galgaro A., Santa D. G., Sipio D. E., Garbari T., Visintainer P., Zanetti A., Sassi R., Crema L. Combining geological surveys, sizing tools and 3D multiphysics in designing a low temperature district heating with integrated ground source heat pumps. Geothermics 2022:101:102381. https://doi.org/10.1016/j.geothermics.2022.102381">https://doi.org/10.1016/j.geothermics.2022.102381
  3. Pursiheimo E., Lindroos T. J., Sundell D., Rämä M., Tulkki V. Optimal investment analysis for heat pumps and nuclear heat in decarbonised Helsinki metropolitan district heating system. Energy Storage and Saving 2022:1(2):80–92. https://doi.org/10.1016/j.enss.2022.03.001">https://doi.org/10.1016/j.enss.2022.03.001
  4. Calise F., Liberato Cappiello F., Cimmino L., Dentice d’Accadia M., Vicidomini M. Optimal design of a 5th generation district heating and cooling network based on seawater heat pumps. Energy Conversion and Management 2022:267:2022. https://doi.org/10.1016/j.enconman.2022.115912">https://doi.org/10.1016/j.enconman.2022.115912
  5. Sorknæs P., Nielsen S., Lund H., Mathiesen V. B., Moreno D., Thellufsen Z. J. The benefits of 4th generation district heating and energy efficient datacentres. Energy 2022:260:125215. https://doi.org/10.1016/j.energy.2022.125215">https://doi.org/10.1016/j.energy.2022.125215
  6. Cozzini M., Bava F. Integration of Substations into DHC Networks 2018.
  7. Brunt N., Duquette J., O’Brien W. Techno-economic and environmental performance of two state-of-the-art solarassisted district energy system topologies. Energy 2023:276:127638. https://doi.org/10.1016/j.energy.2023.127638">https://doi.org/10.1016/j.energy.2023.127638
  8. Al-Sayyab A. K. S., Navarro-Esbrí J., Mota-Babiloni A. Energy, exergy, and environmental (3E) analysis of a compound ejector-heat pump with low GWP refrigerants for simultaneous data center cooling and district heating. International Journal of Refrigeration 2022:133:61–72. https://doi.org/10.1016/j.ijrefrig.2021.09.036">https://doi.org/10.1016/j.ijrefrig.2021.09.036
  9. Dino G. E., Catrini P., Buscemi A., Piacentino A., Palomba V., Frazzicia A. Modeling of a bidirectional substation in a district heating network: Validation, dynamic analysis, and application to a solar prosumer. Energy 2023:284:128621. https://doi.org/10.1016/j.energy.2023.128621">https://doi.org/10.1016/j.energy.2023.128621
  10. Capone M., Guelpa E., Verda V. Optimal Installation of Heat Pumps in Large District Heating Networks. Energies (Basel) 2023:16(3):1448. https://doi.org/10.3390/en16031448">https://doi.org/10.3390/en16031448
  11. Pasqui M., Vaccaro G., Lubello P., Milazzo A., Carcasci C. Heat pumps and thermal energy storages centralised management in a Renewable Energy Community. International Journal of Sustainable Energy Planning and Management 2023:38:65–82. https://doi.org/10.54337/ijsepm.7625">https://doi.org/10.54337/ijsepm.7625
  12. Maccarini A., Sotnikov A., Sommer T., Wetter M., Sulzer M., Afshari A. Influence of building heat distribution temperatures on the energy performance and sizing of 5th generation district heating and cooling networks. Energy 2023:275:127457. https://doi.org/10.1016/j.energy.2023.127457">https://doi.org/10.1016/j.energy.2023.127457
  13. Martinazzoli G., Pasinelli D., Lezzi A. M., Pilotelli M. Design of a 5th Generation District Heating Substation Prototype for a Real Case Study. Sustainability 2023:15(4):2972. https://doi.org/10.3390/su15042972">https://doi.org/10.3390/su15042972
  14. Quirosa G., Torres M., Soltero V. M., Chacartegui R. Energetic and economic analysis of decoupled strategy for heating and cooling production with CO2 booster heat pumps for ultra-low temperature district network. Journal of Building Engineering 2022:45:103538. https://doi.org/10.1016/j.jobe.2021.103538">https://doi.org/10.1016/j.jobe.2021.103538
  15. Johannsen R. M., Prina M. G., Østergaard P. A., Mathiesen B. V., Sparber W. Municipal energy system modelling – A practical comparison of optimisation and simulation approaches. Energy 2023:269:126803. https://doi.org/10.1016/j.energy.2023.126803">https://doi.org/10.1016/j.energy.2023.126803
  16. Frik A., Bielskus J., Dzikevics M. Experimental Study on the Control of the Positions of the Cycle Isotherms of the Heat Pump in the Air Handling Unit. Environmental and Climate Technologies 2023:27(1):889–899. https://doi.org/10.2478/rtuect-2023-0065">https://doi.org/10.2478/rtuect-2023-0065
  17. Ołtarzewska A., Krawczyk D. A. Analysis of Heat Pumps Efficiency in Selected Locations – A Case Study. Environmental and Climate Technologies 2022:26(1):648–657. https://doi.org/10.2478/rtuect-2022-0049">https://doi.org/10.2478/rtuect-2022-0049
  18. Kirs T., Sukumaran S., Latõšov E., Volkova A. Use of Absorption Heat Pumps to Raise District Cooling Waste Heat Temperature for District Heating Supply in Tallinn: Technical and Economic Analysis. Environmental and Climate Technologies 2024:28(1):409–421. https://doi.org/10.2478/rtuect-2024-0032">https://doi.org/10.2478/rtuect-2024-0032
  19. Arabkoohsar A., Alsagri A. S. A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems. Energy 2020:193:116781. https://doi.org/10.1016/j.energy.2019.116781">https://doi.org/10.1016/j.energy.2019.116781
  20. Chicherin S., Zhuikov A., Junussova L. Integrating a heat pump into a 4th generation district heating (4GDH) system – Two-mode configuration inputting operational data. Energy and Buildings 2022:275:112445. https://doi.org/10.1016/j.enbuild.2022.112445">https://doi.org/10.1016/j.enbuild.2022.112445
  21. Serrat L., Linares J. I., Cledera M. M., Morales C., Hueso K. Ground source heat pump driven by reciprocating engine firing biomethane from wastewater treatment plant sludge in a cogeneration for district heating and cooling. A case study in Spain. Applied Thermal Engineering 2023:219:119586. https://doi.org/10.1016/j.applthermaleng.2022.119586">https://doi.org/10.1016/j.applthermaleng.2022.119586
  22. Hering D., Cansev M. E., Tamassia E., Xhonneux A., Müller D. Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming. Energy 2021:224:120140. https://doi.org/10.1016/j.energy.2021.120140">https://doi.org/10.1016/j.energy.2021.120140
  23. Lämmle M., Bongs C., Wapler J., Günther J., Hess S., Kropp M., Herkel S. Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures to reduce space heating temperatures in existing buildings. Energy 2022:242:122952. https://doi.org/10.1016/j.energy.2021.122952">https://doi.org/10.1016/j.energy.2021.122952
  24. Jebamalai J. M., Marlein K., Laverge J. Influence of centralized and distributed thermal energy storage on district heating network design. Energy 2020:202:117689. https://doi.org/10.1016/j.energy.2020.117689">https://doi.org/10.1016/j.energy.2020.117689
  25. How to use your heat pump efficiently this winter. Genesis NZ [Online]. Available: https://www.genesisenergy.co.nz/tips-and-tricks/articles/use-your-heat-pump-efficiently-this-winter
  26. Lygnerud K., Ottosson J., Kensby J., Johansson L. Business models combining heat pumps and district heating in buildings generate cost and emission savings. Energy 2021:234:121202. https://doi.org/10.1016/j.energy.2021.121202">https://doi.org/10.1016/j.energy.2021.121202
  27. Korpela T., Kuosa M., Sarvelainen H., Tuliniemi E., Kiviranta P., Tallinen K., Koponen H. K. Waste heat recovery potential in residential apartment buildings in Finland’s Kymenlaakso region by using mechanical exhaust air ventilation and heat pumps. International Journal of Thermofluids 2022:13:100127. https://doi.org/10.1016/j.ijft.2021.100127">https://doi.org/10.1016/j.ijft.2021.100127
  28. Stanica D. I., Bachmann M., Kriegel M. Design and performance of a multi-level cascading district heating network with multiple prosumers and energy storage. Energy Reports 2021:7(S4):128–139. https://doi.org/10.1016/j.egyr.2021.08.163">https://doi.org/10.1016/j.egyr.2021.08.163
DOI: https://doi.org/10.2478/rtuect-2025-0018 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 259 - 271
Submitted on: Mar 10, 2025
Accepted on: May 4, 2025
Published on: Jun 28, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Stanislav Chicherin, Jonathan Hachez, Afraz Mehmood Chaudhry, Svend Bram, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.