Have a personal or library account? Click to login
Machine Learning Approach for Predicting Environmental Impact: A Neuro-Fuzzy Model for Life Cycle Impact Assessment of Strawberry Production Cover

Machine Learning Approach for Predicting Environmental Impact: A Neuro-Fuzzy Model for Life Cycle Impact Assessment of Strawberry Production

Open Access
|Jun 2025

References

  1. Fan J., Liu C., Xie J., Han L., Zhang C., Guo D., Niu J., Jin H., McConkey B. G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. International Journal of Environmental Research and Public Health 2022:19(16):9817. https://doi.org/10.3390/ijerph19169817">https://doi.org/10.3390/ijerph19169817
  2. Ghoroghi A., Rezgui Y., Petri I. Advances in application of machine learning to life cycle assessment: A literature review. The International Journal of Life Cycle Assessment 2022:27:433–456. https://doi.org/10.1007/s11367-022-02030-3">https://doi.org/10.1007/s11367-022-02030-3
  3. Schlegl F., Gantner J., Traunspurger R., Albrecht S., Leistner P. LCA of buildings in Germany: Proposal for a future benchmark based on existing databases. Energy and Buildings 2019:194:342–350. https://doi.org/10.1016/j.enbuild.2019.04.038">https://doi.org/10.1016/j.enbuild.2019.04.038
  4. Dong Y., Ng. S.T., Liu P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Building and Environment 2021:204:108–162. https://doi.org/10.1016/j.buildenv.2021.108162">https://doi.org/10.1016/j.buildenv.2021.108162
  5. Koyamparambath A., Adibi N., Szablewski C., Adibi S. A., Sonnemann G. Implementing Artificial Intelligence Techniques to Predict Environmental Impacts: Case of Construction Products. Sustainability 2022:14(6):3699. https://doi.org/10.3390/su14063699">https://doi.org/10.3390/su14063699
  6. Harvey J., et al. (Eds.). (2020). Pavement, Roadway, and Bridge Life Cycle Assessment. Taylor & Francis Group. Proceedings of the International Symposium on Pavement. Roadway, and Bridge Life Cycle Assessment 2020. LCA 2020, Sacramento, CA, 3–6 June 2020.
  7. Tiwari M. K., et al. Role of Artificial Intelligence in Green Public Procurement. Applications of Emerging Technologies and AI/ML Algorithms, Asset Analytics. Springer 2023:361–371. https://doi.org/10.1007/978-981-99-1019-9_32">https://doi.org/10.1007/978-981-99-1019-9_32
  8. Dunn J. B., Balaprakash P. Chapter 1 – Overview of Data Science and Sustainability Analysis. Data Science Applied to Sustainability Analysis 2021:1–14. https://doi.org/10.1016/B978-0-12-817976-5.00001-2">https://doi.org/10.1016/B978-0-12-817976-5.00001-2
  9. Burkov A. The Hundred-Page Machine Learning Book. Quebec City: 2019.
  10. Cerulli G. Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata. Springer, 2023. https://doi.org/10.1007/978-3-031-41337-7">https://doi.org/10.1007/978-3-031-41337-7
  11. Xue R. X., Zhang X., Pang Y., Gao F., Xu M., Lin S., et al. (2024). A review of machine learning applications in life cycle assessment studies. Science of The Total Environment 2024:912:168969. https://doi.org/10.1016/j.scitotenv.2023.168969">https://doi.org/10.1016/j.scitotenv.2023.168969
  12. Barros N. N., Ruschel R. C. Machine Learning for Whole-Building Life Cycle Assessment: A Systematic Literature Review. Proceedings of the 18th International Conference on Computing in Civil and Building Engineering 2021:98:109–122. https://doi.org/10.1007/978-3-030-51295-8_10">https://doi.org/10.1007/978-3-030-51295-8_10
  13. Tao M., Li D., Song R., Suh S., Keller A. A. OrganoRelease – A framework for modeling the release of organic chemicals from the use and post-use of consumer products. Environmental Pollution 2018:234:751–761. https://doi.org/10.1016/j.envpol.2017.11.058">https://doi.org/10.1016/j.envpol.2017.11.058
  14. Sharif S. A., Hammad A. Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost, and Life-Cycle Assessment. Journal of Building Engineering 2019:21:429–445. https://doi.org/10.1016/j.jobe.2018.11.006">https://doi.org/10.1016/j.jobe.2018.11.006
  15. Meng F., LaFleur C., Wijesinghe A., Colvin, J. Data-driven approach to fill in data gaps for life cycle inventory of dual fuel technology. Fuel 2019:246:187–195. https://doi.org/10.1016/j.fuel.2019.02.124">https://doi.org/10.1016/j.fuel.2019.02.124
  16. Liao M., Kelley S., Yao Y. Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based Process Simulation. ACS Sustainable Chemistry & Engineering 2020:8(2):1252–1261. https://doi.org/10.1021/acssuschemeng.9b06522">https://doi.org/10.1021/acssuschemeng.9b06522
  17. Nguyen T. H., Nong D., Paustian, K. Surrogate-based multi-objective optimization of management options for agricultural landscapes using artificial neural networks. Ecological Modelling 2019:400:1–13. https://doi.org/10.1016/j.ecolmodel.2019.02.018">https://doi.org/10.1016/j.ecolmodel.2019.02.018
  18. Thilakarathna P. S. M., Seo S., Baduge K. S. K., Lee H., Mendis P., Foliente G. Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms. Journal of Cleaner Production 2020:262:121281. https://doi.org/10.1016/j.jclepro.2020.121281">https://doi.org/10.1016/j.jclepro.2020.121281
  19. Cheng F., Porter M. D., Colosi L. M. Is hydrothermal treatment coupled with carbon capture and storage an energyproducing negative emissions technology? Energy Conversion and Management 2020:203:112252. https://doi.org/10.1016/j.enconman.2019.112252">https://doi.org/10.1016/j.enconman.2019.112252
  20. Cornago S., Vitali A., Brondi C., Low J. S. C. Electricity Technological Mix Forecasting for Life Cycle Assessment Aware Scheduling. Procedia CIRP 2020:90:268–273. https://doi.org/10.1016/j.procir.2020.01.099">https://doi.org/10.1016/j.procir.2020.01.099
  21. Naseri H., Jahanbakhsh H., Hosseini P., Moghadas Nejad F. Designing sustainable concrete mixture by developing a new machine learning technique. Journal of Cleaner Production 2020:258:120578. https://doi.org/10.1016/j.jclepro.2020.120578">https://doi.org/10.1016/j.jclepro.2020.120578
  22. Płoszaj-Mazurek M., Ryńska E., Grochulska-Salak M. Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design. Energies 2020:13(20):5289. https://doi.org/10.3390/en13205289">https://doi.org/10.3390/en13205289
  23. Xikai M., Lixiong W., Jiwei L., Xiaoli Q., Tongyao W. Comparison of regression models for estimation of carbon emissions during building’s lifecycle using designing factors: A case study of residential buildings in Tianjin, China.Energy and Buildings 2019:204:109519. https://doi.org/10.1016/j.enbuild.2019.109519">https://doi.org/10.1016/j.enbuild.2019.109519
  24. D’Amico A., Ciulla G., Traverso M., Lo Brano V., Palumbo E. Artificial Neural Networks to assess energy and environmental performance of buildings: An Italian case study. Journal of Cleaner Production 2019:239:117993. https://doi.org/10.1016/j.jclepro.2019.117993">https://doi.org/10.1016/j.jclepro.2019.117993
  25. Duprez S., Fouquet M., Herreros Q., Jusselme T. Improving life cycle-based exploration methods by coupling sensitivity analysis and metamodels. Sustainable Cities and Society 2019:44:70–84. https://doi.org/10.1016/j.scs.2018.09.032">https://doi.org/10.1016/j.scs.2018.09.032
  26. Khoshnevisan B., Rafiee S., Mousazadeh H. Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy 2013:50:29–37. https://doi.org/10.1016/j.eja.2013.05.003">https://doi.org/10.1016/j.eja.2013.05.003
  27. Khoshnevisan B., Rafiee S., Omid M., Mousazadeh H., Sefeedpari, P. Prognostication of environmental indices in potato production using artificial neural networks. Journal of Cleaner Production 2013:52:402–409. https://doi.org/10.1016/j.jclepro.2013.03.028">https://doi.org/10.1016/j.jclepro.2013.03.028
  28. Khoshnevisan B., Rajaeifar M. A., Clark S., Shamahirband S., Anuar N. B., Mohd Shuib N. L., Gani, A. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of The Total Environment 2014:481:242–251. https://doi.org/10.1016/j.scitotenv.2014.02.052">https://doi.org/10.1016/j.scitotenv.2014.02.052
  29. Khanali M., Mobli H., Hosseinzadeh-Bandbafha H. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environmental Science and Pollution Research 2017:24:26324–26340. https://doi.org/10.1007/s11356-017-0234-5">https://doi.org/10.1007/s11356-017-0234-5
  30. Mousavi-Avval S. H., Rafiee S., Sharifi M., Hosseinpour S., Shah A. Combined application of Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production. Renewable and Sustainable Energy Reviews 2017:78:807–820. https://doi.org/10.1016/j.rser.2017.05.002">https://doi.org/10.1016/j.rser.2017.05.002
  31. Vlontzos G., Pardalos P. M. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing DEA Window analysis and artificial neural networks. Renewable and Sustainable Energy Reviews 2017:76:155–162. https://doi.org/10.1016/j.rser.2017.03.054">https://doi.org/10.1016/j.rser.2017.03.054
  32. Nabavi-Pelesaraei A., Rafiee S., Mohtasebi S. S., Hosseinzadeh-Bandbafha H., Chau K. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of The Total Environment 2018:631–632:1279–1294. https://doi.org/10.1016/j.scitotenv.2018.03.088">https://doi.org/10.1016/j.scitotenv.2018.03.088
  33. Lee E. K., Zhang W.-J., Zhang X., Adler P. R., Lin S., Feingold B. J., et al. Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach. Science of The Total Environment 2020:714:136697. https://doi.org/10.1016/j.scitotenv.2020.136697">https://doi.org/10.1016/j.scitotenv.2020.136697
  34. Romeiko X. X., Guo Z., Pang Y., Lee E. K., Zhang X. Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability 2020:12(4):1481. https://doi.org/10.3390/su12041481">https://doi.org/10.3390/su12041481
  35. Kaab A., Sharifi M., Mobli H., Nabavi-Pelesaraei A., Chau K. Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of The Total Environment 2019:664:1005–1019. https://doi.org/10.1016/j.scitotenv.2019.02.004">https://doi.org/10.1016/j.scitotenv.2019.02.004
  36. Ozbilen A., Aydin M., Dincer I., Rosen M. A. Life cycle assessment of nuclear-based hydrogen production via a copper–chlorine cycle: A neural network approach. International Journal of Hydrogen Energy 2013:38(15):6314–6322. https://doi.org/10.1016/j.ijhydene.2013.03.071">https://doi.org/10.1016/j.ijhydene.2013.03.071
  37. Marvuglia A., Kanevski M., Benetto E. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space. Environment International 2015:83:72–85. https://doi.org/10.1016/j.envint.2015.05.011">https://doi.org/10.1016/j.envint.2015.05.011
  38. Slapnik M., Istenič D., Pintar M., Udovč A. Extending life cycle assessment normalization factors and use of machine learning – A Slovenian case study. Ecological Indicators 2016:50:161–172. https://doi.org/10.1016/j.ecolind.2014.10.028">https://doi.org/10.1016/j.ecolind.2014.10.028
  39. Hou P., Jolliet O., Zhu J., Xu M. Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. Environment International 2020:135:105393. https://doi.org/10.1016/j.envint.2019.105393">https://doi.org/10.1016/j.envint.2019.105393
  40. Asif Z., Chen Z., Zhu Z. H. An integrated life cycle inventory and artificial neural network model for mining air pollution management. International Journal of Environmental Science and Technology 2019:16(4):1847–1856. https://doi.org/10.1007/s13762-018-1813-9">https://doi.org/10.1007/s13762-018-1813-9
  41. Song R., Keller A. A., Suh S. Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. Environmental Science & Technology 2017:51(18):10777–10785. https://doi.org/10.1021/acs.est.7b02862">https://doi.org/10.1021/acs.est.7b02862
  42. Zhu X., Ho C.-H., Wang X. Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes. ACS Sustainable Chemistry & Engineering 2020:8(30):11141–11151. https://doi.org/10.1021/acssuschemeng.0c02211">https://doi.org/10.1021/acssuschemeng.0c02211
  43. Azari R., Garshasbi S., Amini P., Rashed-Ali H., Mohammadi Y. Multi-objective optimization of building envelope design for life cycle environmental performance. Energy and Buildings 2016:126:524–534. https://doi.org/10.1016/j.enbuild.2016.05.054">https://doi.org/10.1016/j.enbuild.2016.05.054
  44. Zhao Y., Zhang Q., Li F. Y. Patterns and drivers of household carbon footprint of the herdsmen in the typical steppe region of Inner Mongolia, China: A case study in Xilinhot City. Journal of Cleaner Production 2019:232:408–416. https://doi.org/10.1016/j.jclepro.2019.05.351">https://doi.org/10.1016/j.jclepro.2019.05.351
  45. Abdella G. M., Kucukvar M., Onat N. C., Al-Yafay H. M., Bulak M. E. Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production 2020:251:119661. https://doi.org/10.1016/j.jclepro.2019.119661">https://doi.org/10.1016/j.jclepro.2019.119661
  46. Ziyadi M., Al-Qadi I. L. Model uncertainty analysis using data analytics for life-cycle assessment (LCA) applications. The International Journal of Life Cycle Assessment 2019:24(8):945–959. https://doi.org/10.1007/s11367-018-1528-7">https://doi.org/10.1007/s11367-018-1528-7
  47. Romeiko X. X., Lee E. K., Sorunmu Y., Zhang X. Spatially and Temporally Explicit Life Cycle Environmental Impacts of Soybean Production in the U.S. Midwest. Environmental Science & Technology 2020:54(8):4758–4768. https://doi.org/10.1021/acs.est.9b06874">https://doi.org/10.1021/acs.est.9b06874
  48. Abokersh M. H., Vallès M., Cabeza L. F., Boer D. A framework for the optimal integration of solar-assisted district heating in different urban-sized communities: A robust machine learning approach incorporating global sensitivity analysis. Applied Energy 2020:267:114903. https://doi.org/10.1016/j.apenergy.2020.114903">https://doi.org/10.1016/j.apenergy.2020.114903
  49. Zadeh L. A. Fuzzy sets. Information and Control 1965:8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X">https://doi.org/10.1016/S0019-9958(65)90241-X
  50. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1980:15(1):116–132. https://doi.org/10.1109/TSMC.1985.6313399">https://doi.org/10.1109/TSMC.1985.6313399
  51. Jang J.-S. R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 1993:23(3):665–685. https://doi.org/10.1109/21.256541">https://doi.org/10.1109/21.256541
  52. Suganya R., Shanthi R. Fuzzy C-Means Algorithm: A review. Semantics Scholar 2012.
  53. Yager R. R., Filev D. P. Generation of fuzzy rules by mountain clustering. Journal of Intelligent and Fuzzy Systems 1994:2(3):209–219. https://doi.org/10.3233/IFS-1994-2301">https://doi.org/10.3233/IFS-1994-2301
  54. Bataineh K., Najia M., Saqera M. A comparison study between various fuzzy clustering algorithms. Semantics Scholar 2011.
  55. Mola M., Amiri-Ahouee R. ANFIS model based on fuzzy C-mean, grid partitioning, and subtractive clustering for detection of stator winding inter-turn fault in PM synchronous motor. International Transactions on Electrical Energy Systems 2021:31(3):e12770. https://doi.org/10.1002/2050-7038.12770">https://doi.org/10.1002/2050-7038.12770
  56. Naderloo L., Alimardani R., Omid M., Sarmadian F., Javadikia P., Torabi M. Y., Alimardani F. Application of ANFIS to predict crop yield based on different energy inputs. Measurement 2012:45(6):1406–1413. https://doi.org/10.1016/j.measurement.2012.03.025">https://doi.org/10.1016/j.measurement.2012.03.025
DOI: https://doi.org/10.2478/rtuect-2025-0017 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 243 - 258
Submitted on: Apr 4, 2025
Accepted on: Jun 2, 2025
Published on: Jun 28, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Maksims Feofilovs, Majid Zaeemi, Andrea Cappelli, Francesco Romagnoli, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.