Have a personal or library account? Click to login

Implications of Climate Change on PV Generation in Semi-Arid Zones

Open Access
|Jun 2025

References

  1. Blackridge Research & Consulting. Global Solar PV Market Review. 2023. [Online]. [Accessed 17.03.2024]. Availablet: https://www.blackridgeresearch.com/blog/global-solar-photovoltaic-pv-power-market-industryannual-review-roundup-2023
  2. SolarPower Europe. Global Market Outlook For Solar Power 2023–2027. 2023. [Online]. [Accessed 17.03.2024] Available: https://www.solarpowereurope.org/insights/market-outlooks/global-market-outlook-for-solar-power-2023-2027-1
  3. International Energy Agency Photovoltaic Power Systems Programme (IEA-PVPS). Snapshot of Global PV Markets – 2023. [Online]. [Accessed 17.03.2024]. Available: https://iea-pvps.org/snapshot-reports/snapshot-2023/
  4. International Energy Agency Photovoltaic Power Systems Programme (IEA-PVPS). Trends in photovoltaic applications 2023 [Online]. [Accessed 17.03.2024]. Available: https://iea-pvps.org/trends_reports/trends-2023/
  5. International Energy Agency (IEA). 2023. Executive summary – Renewable Energy Market Update - June 2023 – Analysis [Online]. [Accessed 17.03.2024]. Available: https://www.iea.org/reports/renewable-energy-marketupdate-june-2023/executive-summary
  6. Larsen P. H. Climate disruptions are already here. Nature Energy 2021:6:696–697. https://doi.org/10.1038/s41560-021-00864-z">https://doi.org/10.1038/s41560-021-00864-z
  7. Yang Y., Javanroodi K., Nik V. M. Climate Change and Renewable Energy Generation in Europe – Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties. Energies 2022:15(1):302. https://doi.org/10.3390/en15010302">https://doi.org/10.3390/en15010302
  8. Solaun K., Cerdá E. The Impact of Climate Change on the Generation of Hydroelectric Power—A Case Study in Southern Spain. Energies 2017:10(9):1343. https://doi.org/10.3390/en10091343">https://doi.org/10.3390/en10091343
  9. Yalew S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nature Energy 2020:5:794–802. https://doi.org/10.1038/s41560-020-0664-z">https://doi.org/10.1038/s41560-020-0664-z
  10. Almeida R. M. et al. Climate change may impair electricity generation and the economic viability of future Amazon hydropower. Global Environmental Change 2021:71:102383. https://doi.org/10.1016/j.gloenvcha.2021.102383">https://doi.org/10.1016/j.gloenvcha.2021.102383
  11. Islam B. S. B., Sokhansefat T. Climate change mitigation with clean energy: a case study on the potential of solar photovoltaic power plants in eastern Iran. Arabian Journal of Geosciences 2023:16:108. https://doi.org/10.1007/s12517-022-11131-0">https://doi.org/10.1007/s12517-022-11131-0
  12. Suman A. Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal. Renewable & Sustainable Energy Reviews 2021:151:111524. https://doi.org/10.1016/j.rser.2021.111524">https://doi.org/10.1016/j.rser.2021.111524
  13. Zapata V. et al. Climate change impacts on the energy system: a model comparison. Environmental Research Letters 2022:17:034036. https://doi.org/10.1088/1748-9326/ac5141">https://doi.org/10.1088/1748-9326/ac5141
  14. Gökgöz F., Yalçın E. 2 - Can renewable energy sources be a viable instrument for climate change mitigation? Evidence from EU countries via MCDM methods. Climate Change Science 2021:19–39. https://doi.org/10.1016/B978-0-12-823767-0.00002-1">https://doi.org/10.1016/B978-0-12-823767-0.00002-1
  15. Demirhan H. Solar Photovoltaic Utilization in Electricity Generation to Tackle Climate Change. Journal of Environmental Informatics 2022:40(1). https://doi.org/10.3808/jei.202200475">https://doi.org/10.3808/jei.202200475
  16. Zhang J., You Q., Ullah S. Changes in photovoltaic potential over China in a warmer future. Environmental Research Letters 2022:17:114032. https://doi.org/10.1088/1748-9326/ac9e0b">https://doi.org/10.1088/1748-9326/ac9e0b
  17. Matera N., Mazzeo D., Baglivo C., Congedo P., M. Will Climate Change Affect Photovoltaic Performances? A Long-Term Analysis from 1971 to 2100 in Italy. Energies 2022:15(24):9546. https://doi.org/10.3390/en15249546">https://doi.org/10.3390/en15249546
  18. Amega K., Lare Y., Bhandari R., Moumouni Y., Egbendewe A. Y. G., Sawadogo W., Madougou S. Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo. Energies 2022:15(24):9532. https://doi.org/10.3390/en15249532">https://doi.org/10.3390/en15249532
  19. Jerez S., Tobin I., Vautard R., Montávez J. P., López-Romero J. M., Thais F., Bartok B., Christensen O. B., Colette A., Déqué M., Nikulin G. The impact of climate change on photovoltaic power generation in Europe. Nature Communications 2015:6(1):10014. https://doi.org/10.1038/ncomms10014">https://doi.org/10.1038/ncomms10014
  20. Kwadwo D. D., Anquetin S., Diedhiou A., Lavaysse C., Hingray B., Raynaud D., Kobea A. T. A CMIP6 assessment of the potential climate change impacts on solar photovoltaic energy and its atmospheric drivers in West Africa. Environmental Research Letters 2022:17(4):044016. https://doi.org/10.1088/1748-9326/ac5a67">https://doi.org/10.1088/1748-9326/ac5a67
  21. Nwokolo S. C., Obiwulu A. U., Ogbulezie J. C. Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of The Earth, Parts A/B/C 2023:130:103389. https://doi.org/10.1016/j.pce.2023.103389">https://doi.org/10.1016/j.pce.2023.103389
  22. Hou X., Wild M., Folini D., Kazadzis S., Wohland J. Climate change impacts solar power generation and its spatial variability in Europe based on CMIP6. Earth System Dynamics Discussions 2021:12(4):1099–1113. https://doi.org/10.5194/esd-12-1099-2021">https://doi.org/10.5194/esd-12-1099-2021
  23. Yang Y., Javanroodi K., Nik V. M. Climate Change and Renewable Energy Generation in Europe—Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties. Energies 2022:15(1):302. https://doi.org/10.3390/en15010302">https://doi.org/10.3390/en15010302
  24. Peters I. M., Buonassisi T. On Climate Change and Photovoltaic Energy Production. arXiv: Physics and Society, 2019.
  25. Scheele R., Fiedler S. Future change of global photovoltaic power potential in a warming world. EMS Annual Meeting Abstracts, Vol. 19, EMS2022-89, 2022. https://doi.org/10.5194/ems2022-89">https://doi.org/10.5194/ems2022-89
  26. Cacciuttolo C., Guzmán V., Catriñir P. Renewable Solar Energy Facilities in South America — The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies 2024:17(22):5532. https://doi.org/10.3390/en17225532">https://doi.org/10.3390/en17225532
  27. Narváez G., Bressan M., Pantoja A., Giraldo F. L. Climate change impact on photovoltaic power potential in South America. Atmospheric and Oceanic Physics 2023:5:081004. https://doi.org/10.1088/2515-7620/acf02e">https://doi.org/10.1088/2515-7620/acf02e
  28. Al-Baghdadi Maher A. R. Sadiq., Ridha A. A., Ali Salam Al-Khayyat. The effects of climate change on photovoltaic solar production in hot regions. Diagnostyka 2022:23(3). https://doi.org/10.29354/diag/152276">https://doi.org/10.29354/diag/152276
  29. Shojaeefard M. H., Sakran N. B., Sharfabadi M. M., Hussein O. A., Hussein A. M. Experimental and Numerical Investigation of the Effect of Water Cooling on the Temperature Distribution of Photovoltaic Modules Using Copper Pipes. Energies 2023:16(10):4102. https://doi.org/10.3390/en16104102">https://doi.org/10.3390/en16104102
  30. Nicoletti F., Cucumo M. A., Ferraro V., Kaliakatsos D., Gigliotti A. A Thermal Model to Estimate PV Electrical Power and Temperature Profile along Panel Thickness. Energies 2022:15(20):7577. https://doi.org/10.3390/en15207577">https://doi.org/10.3390/en15207577
  31. Tahir Z. R., Kanwal A., Asim M., Bilal M., Abdullah M., Saleem S., Mujtaba M. A., Veza I., Mousa M., Kalam M. A. Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones. Sustainability 2022:14(23):15810. https://doi.org/10.3390/su142315810">https://doi.org/10.3390/su142315810
  32. Brahma H., Sarmah N. Performance Analysis of Spectrum-Dependent Integrated Thermal–Electrical Model of a PV Module. IEEE Journal of Photovoltaics 2023:13(3). https://doi.org/10.1109/JPHOTOV.2023.3249959">https://doi.org/10.1109/JPHOTOV.2023.3249959
  33. Libra M., Petrik T., Poulek V., Tyukhov I. I., Kourim P. Changes in the Efficiency of Photovoltaic Energy Conversion in Temperature Range With Extreme Limits. IEEE Journal of Photovoltaics 2021:11(6). https://doi.org/10.1109/JPHOTOV.2021.3108484">https://doi.org/10.1109/JPHOTOV.2021.3108484
  34. Thomas O. A., Rotipin K. J., Makanju T. D. Temperature Effects on Optimal Performance of PV Module. Journal of Engineering Advancements 2022:3(04). https://doi.org/10.38032/jea.2022.04.004">https://doi.org/10.38032/jea.2022.04.004
  35. Albatayneh A., Albadaineh R., Juaidi A., Abdallah R., Montoya M. D., Manzano-Agugliaro F. Rooftop photovoltaic system as a shading device for uninsulated buildings. Energy Reports 2022:1(8):4223–4232. https://doi.org/10.1016/j.egyr.2022.03.082">https://doi.org/10.1016/j.egyr.2022.03.082
  36. Albatayneh A., Alterman D., Page A., Moghtaderi B. Renewable energy systems to enhance buildings thermal performance and decrease construction costs. Energy Procedia 2018:152:312–317. https://doi.org/10.1016/j.egypro.2018.09.138">https://doi.org/10.1016/j.egypro.2018.09.138
  37. Albatayneh A., Alterman D., Page A., Moghtaderi B. Thermal assessment of buildings based on occupants behavior and the adaptive thermal comfort approach. Energy Procedia 2017:115:265–271. https://doi.org/10.1016/j.egypro.2017.05.024">https://doi.org/10.1016/j.egypro.2017.05.024
  38. Albatayneh A., Juaidi A., Abdallah R., Manzano-Agugliaro F. Influence of the advancement in the LED lighting technologies on the optimum windows-to-wall ratio of Jordanian residential buildings. Energies 2021:14(17):5446. https://doi.org/10.3390/en14175446">https://doi.org/10.3390/en14175446
  39. Xian Z., Du P., Pan J., Zheng Y., Huang Z. Development of Photovoltaic Cell Production Information Management System. Journal of Physics: Conference Series 2023:2435. https://doi.org/10.1088/1742-6596/2435/1/012017">https://doi.org/10.1088/1742-6596/2435/1/012017
  40. Ahmad F. F., Abdelsalam M., Hamid A.-K., Ghenai C., Obaid W., Bettayeb M. Experimental Validation of PVSYST Simulation for Fix Oriented and Azimuth Tracking Solar PV System. In: Goel N., Hasan S., Kalaichelvi V. (eds) Modelling, Simulation and Intelligent Computing. MoSICom 2020. Lecture Notes in Electrical Engineering, Springer, 2020:659. https://doi.org/10.1007/978-981-15-4775-1_25">https://doi.org/10.1007/978-981-15-4775-1_25
  41. Bolat M., Arifoğlu U., Demiryürek H. K. Lebit Enerji Güneş Santralinin Pvsyst Programı ile Analizi. (Energy Solar Power Plant Analysis with Pvsyst Program) 2020:9(3):1351–1363. https://doi.org/10.17798/bitlisfen.650786">https://doi.org/10.17798/bitlisfen.650786
  42. Jinhao Z., Guoqiang W., Bu X., Yide L., Juerong C. Solar cell production system, 2019.
  43. Adar M., Mabrouki M., Bennouna A., Chebak A. Production study of a grid-connected PV plant. International Renewable and Sustainable Energy Conference (IRSEC). Marrakesh, 2016. https://doi.org/10.1109/IRSEC.2016.7983963">https://doi.org/10.1109/IRSEC.2016.7983963
  44. Obadolagbonyi S. M., Meliopoulos S. A. P., Liu K., Karimi A. Dynamic Modeling and Simulation of Two-stage Grid Utility-Scale PV System. 5th Global Power, Energy and Communication Conference (GPECOM), 2023. https://doi.org/10.1109/GPECOM58364.2023.10175670">https://doi.org/10.1109/GPECOM58364.2023.10175670
  45. Yang. S., Lei H., Liu Z. Chapter 1 – Modeling and Simulation of Solar Photovoltaic (PV) System. In: Ren J., He C., Dong L. Toward Better Photovoltaic Systems: Design, Simulation, Optimization, Analysis, and Operations. AIP Publishing LLC, 2023. https://doi.org/10.1063/9780735425613_001">https://doi.org/10.1063/9780735425613_001
  46. Alzain E. D., Al-Otaibi S., Aldhyani T. H., Alshebami A. S., Almaiah M. A., Jadhav M. E. Revolutionizing Solar Power Production with Artificial Intelligence: A Sustainable Predictive Model. Sustainability 2023:15(10):7999. https://doi.org/10.3390/su15107999">https://doi.org/10.3390/su15107999
  47. Hashim S. M., Hassan R. I. Impact of high temperature on PV productivity in hot desert climates. Green Technology, Resilience, and Sustainability 2022:2(1). https://doi.org/10.1007/s44173-022-00009-9">https://doi.org/10.1007/s44173-022-00009-9
  48. Mubarok H., Frasetyo M. B., Nur’Aini E. Analisis Dampak Perubahan Iklim Terhadap Efisiensi Pembangkit Listrik Tenaga Surya FTI UII. Buletin Ilmiah Sarjana Teknik Elektro 2022:4(2). https://doi.org/10.12928/biste.v4i2.6487">https://doi.org/10.12928/biste.v4i2.6487
  49. Narváez G., Bressan M., Pantoja A., Giraldo L. F. Climate change impact on photovoltaic power potential in South America. Environmental Research Communications 2023:5:081004. https://doi.org/10.1088/2515-7620/acf02e">https://doi.org/10.1088/2515-7620/acf02e
  50. Albatayneh A., Alterman D., Page A. Adaptation the use of CFD modeling for building thermal simulation. In Proceedings of the 2018 International Conference on Software Engineering and Information Management. 2018:68–72. https://doi.org/10.1145/3178461.3178466">https://doi.org/10.1145/3178461.3178466
  51. Albatayneh A., Jaradat M., AlKhatib M. B., Abdallah R., Juaidi A., Manzano-Agugliaro F. The significance of the adaptive thermal comfort practice over the structure retrofits to sustain indoor thermal comfort. Energies 2021:14(10):2946. https://doi.org/10.3390/en14102946">https://doi.org/10.3390/en14102946
  52. Albatayneh A., Alterman D., Page A. W., Moghtaderi B. Warming issues associated with the long-term simulation of housing using CFD analysis. Journal of Green Building 2016:11(2):57–74. https://doi.org/10.3992/jgb.11.2.57.1">https://doi.org/10.3992/jgb.11.2.57.1
  53. Albatayneh A., Alterman D., Page A., Moghtaderi B. Development of a new metric to characterize the building’s thermal performance in a temperate climate. Energy for Sustainable Development 2019:51:1–12. https://doi.org/10.1016/j.esd.2019.04.002">https://doi.org/10.1016/j.esd.2019.04.002
  54. Albatayneh A., Alterman D., Page A., Moghtaderi B. Discrepancies in peak temperature times using prolonged CFD simulations of housing thermal performance. Energy Procedia 2017:115:253–264. https://doi.org/10.1016/j.egypro.2017.05.023">https://doi.org/10.1016/j.egypro.2017.05.023
  55. Albatayneh A., Alterman D., Page A., Moghtaderi B. Temperature versus energy-based approaches in the thermal assessment of buildings. Energy Procedia 2017:128:46–50. https://doi.org/10.1016/j.egypro.2017.09.013">https://doi.org/10.1016/j.egypro.2017.09.013
  56. Albatayneh A., Albadaineh R. Evaluating Shading Effects of PV Systems: Discrepancies in Simulation Software and Energy Consumption. Environ Clim Technol. 2023:27(1):407–421. https://doi.org/10.2478/rtuect-2023-0030">https://doi.org/10.2478/rtuect-2023-0030
  57. Chiteka K., Enweremadu C. C. An Empirical Approach to Solar Photovoltaic Cell Temperature Prediction. Environ Clim Technol. 2024:28(1):422–436. https://doi.org/10.2478/rtuect-2024-0033">https://doi.org/10.2478/rtuect-2024-0033
  58. Sukumaran S., Laht J., Volkova A. Overview of Solar Photovoltaic Applications for District Heating and Cooling. Environ Clim Technol. 2023:27(1):964–979. https://doi.org/10.2478/rtuect-2023-0070">https://doi.org/10.2478/rtuect-2023-0070
  59. Li M., Wu P., Sexton D. M. H., Zhuguo, Ma. Potential shifts in climate zones under a future global warming scenario using soil moisture classification. Climate Dynamics 2021:56:2071–2092. https://doi.org/10.1007/s00382-020-05576-w">https://doi.org/10.1007/s00382-020-05576-w
  60. Franchito S. H., Brahmananda Rao V., Moraes E. C. Impact of global warming on the geobotanic zones: an experiment with a statistical-dynamical climate model. Climate Dynamics 2011:37:2021–2034. https://doi.org/10.1007/s00382-010-0952-6">https://doi.org/10.1007/s00382-010-0952-6
  61. Mahlstein I., Daniel J., S., Solomon S. The pace of shifts in climate regions increases with global temperature. Nature Climate Change 2013:3:739–743. https://doi.org/10.1038/nclimate1876">https://doi.org/10.1038/nclimate1876
  62. Karandish F., Mousavi S. S., Tabari H. Climate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: analyzing the probable effects on cereal water-use efficiency. Stochastic Environmental Research and Risk Assessment 2017:31:2121–2146. https://doi.org/10.1007/s00477-016-1355-y">https://doi.org/10.1007/s00477-016-1355-y
  63. Yang H., Lu J., Wang Q., Shi X., Lohmann G. Decoding the dynamics of poleward shifting climate zones using aqua-planet model simulations. Climate Dynamics 2022:58:3513–3526. https://doi.org/10.1007/s00382-021-06112-0">https://doi.org/10.1007/s00382-021-06112-0
  64. Mascarelli A. Climate zones will shift faster as the world warms. Nature 2013. https://doi.org/10.1038/nature.2013.12838">https://doi.org/10.1038/nature.2013.12838
  65. Bayar A. S., Yilmaz M. T., Yucel I., Dirmeyer P. CMIP6 Earth System Models Project Greater Acceleration of Climate Zone Change Due To Stronger Warming Rates. Earth’s Future 2023:11(4). https://doi.org/10.1029/2022EF002972">https://doi.org/10.1029/2022EF002972
  66. Al-Odat M., Q. Experimental Study of Temperature Influence on the Performance of PV/T Cell under Jordan Climate Conditions. Journal of Ecological Engineering 2022:23(10). https://doi.org/10.12911/22998993/152283">https://doi.org/10.12911/22998993/152283
  67. Sameh, Monna., Ramez, Abdallah., Adel, Juaidi., Aiman, Albatayneh., Antonio, Zapata-Sierra., Francisco, Manzano-Agugliaro. Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation. Energies 2022:15(2):496. https://doi.org/10.3390/en15020496">https://doi.org/10.3390/en15020496
  68. Saxena A., Brown C., Arneth A., Rounsevell M. Advanced photovoltaic technology can reduce land requirements and climate impact on energy generation. Communications Earth & Environment 2024:5(586). https://doi.org/10.1038/s43247-024-01754-4">https://doi.org/10.1038/s43247-024-01754-4
  69. Feron S., Cordero R. R., Damiani A., Jackson R. B. Climate change extremes and photovoltaic power output. Nature Sustainability 2021:4:270–276. https://doi.org/10.1038/s41893-020-00643-w">https://doi.org/10.1038/s41893-020-00643-w
  70. Qadourah J. A. Energy and economic potential for photovoltaic systems installed on the rooftop of apartment buildings in Jordan. Results in Engineering 2022:16:100462. https://doi.org/10.1016/j.rineng.2022.100642">https://doi.org/10.1016/j.rineng.2022.100642
  71. U.S. Department of Energy, Solar Energy Technologies Office. Cadmium Telluride Photovoltaics Perspective Paper. Washington, DC: U.S. Department of Energy. 2024.
  72. Adeeb J., Farhan A., Al Salaymeh A. Temperature effect on performance of different solar cell technologies. J Ecol Eng. 2019:20(5):249–254. https://doi.org/10.12911/22998993/105543">https://doi.org/10.12911/22998993/105543
  73. Machidon D., Istrate M. Tilt angle adjustment for incident solar energy increase: a case study for Europe. Sustainability 2023:15(8):7015. https://doi.org/10.3390/su15087015">https://doi.org/10.3390/su15087015
  74. Center for Sustainable Systems, University of Michigan. Solar PV Energy Factsheet. Ann Arbor, MI: University of Michigan, 2023.
DOI: https://doi.org/10.2478/rtuect-2025-0015 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 212 - 232
Submitted on: Mar 13, 2025
Accepted on: May 7, 2025
Published on: Jun 19, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Aiman Albatayneh, Murad Al-Omary, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.