Have a personal or library account? Click to login

Corrosion Resistance of Magnesia Binders in Aggressive Liquids

By:
Open Access
|Jun 2025

References

  1. Benhelal E., Shamsaei E., Rashid M. I. Challenges against CO2 abatement strategies in cement industry: A review. Journal of Environmental Sciences 2021:104:84–101. https://doi.org/10.1016/j.jes.2020.11.020
  2. Nie S., Zhou J., Yang F., Lan M., Li J., Zhang Z., Chen Z., Xu M., Li H., Sanjayan J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal of Cleaner Production 2022:334:130270. https://doi.org/10.1016/j.jclepro.2021.130270
  3. Bumanis G., Vaiciukyniene D. Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor. Environmental and Climate Technologies 2021:25(1):931–943. https://doi.org/10.2478/rtuect-2021-0070
  4. Tan Y., Wu C., Yu H., Li Y., Wen J. Review of reactive magnesia-based cementitious materials: Current developments and potential applicability. Journal of Building Engineering 2021:40:102342. https://doi.org/10.1016/j.jobe.2021.102342
  5. Pakere I., Freimanis R., Alena-Ozolina S., Asaris P., Demurtas A., Gorner M., Yearwood J. Cost-Optimal Policy Strategies for Reaching Energy Efficiency Targets and Carbon Neutrality. Environmental and Climate Technologies 2023:27(1):999–1014. https://doi.org/10.2478/rtuect-2023-0073
  6. Beltrán-Velamazán C., Gómez-Gil M., Monzón-Chavarrías M., Espinosa-Fernández A., López-Mesa B. Harnessing Open European Data for a Data-Driven Approach to Enhancing Decarbonization Measurement in the Built Environment. Environmental and Climate Technologies 2024:28(1):776–793. https://doi.org/10.2478/rtuect-2024-0060
  7. Urwongse L., Sorrell C. The System MgO–MgCl2–H2O at 23°C. Journal of the American Ceramic Society 1980:63(9–10):501–504. https://doi.org/10.1111/J.1151-2916.1980.TB10752.X
  8. Battiston T., Comboni D., Verri G., Hanfland M., Gatta G. D. Anisotropic compressional behaviour of the Sorel cement F5-phase (Mg3(OH)5Cl·4H2O). Construction and Building Materials 2023:366:130162. https://doi.org/10.1016/j.conbuildmat.2022.130162
  9. Xu M., Chen X., Han L. Effect of tartaric acid on the early hydration process and water resistance of magnesium oxychloride cement. Journal of Building Engineering 2023:66:105838. https://doi.org/10.1016/j.jobe.2023.105838
  10. Huang X., Wang S., Wu Y., Wang J., Zuo Y. Preparation and characterization of high-strength and water-resistant waterborne epoxy resin/magnesium oxychloride composite based on cross-linked network structure. Construction and Building Materials 2021:285:122902. https://doi.org/10.1016/j.conbuildmat.2021.122902
  11. Miryuk O., Liseitsev Y., Fediuk R. Influence of Iron-Containing Components on the Curing and Hardening Properties of Magnesium Oxychloride Binders. Journal of Materials in Civil Engineering 2024:36(12):04024413. https://doi.org/10.1061/JMCEE7.MTENG-17856
  12. Xu K., Xi J., Guo Y., Dong S. Effects of a new modifier on the water-resistance of magnesite cement tiles. Solid State Sciences 2012:14(1):10–14. https://doi.org/10.1016/j.solidstatesciences.2011.08.009
  13. Ustinova Y.V., Nikiforova T.P. Effect of various additives on the mechanical properties of magnesia binder based materials. Procedia Engineering 2015:111:807–814. https://doi.org/10.1016/j.proeng.2015.07.150
  14. Zhang T., Guo Q., Chen X., Cheeseman C., Wang H., Chang J. Unlocking the role of silica gel in enhancing mechanical properties and water resistance of magnesium oxysulfate cement. Cement and Concrete Composites 2025:157:105941. https://doi.org/10.1016/j.cemconcomp.2025.105941
  15. Guan Y., Hu Z., Zhang Z., Chang J., Bi W., Cheeseman C.R., Zhang T. Effect of hydromagnesite addition on the properties and water resistance of magnesium oxysulfate (MOS) cement. Cement and Concrete Research 2021:143:106387. https://doi.org/10.1016/j.cemconres.2021.106387
  16. Li Y., Li Z., Pei H.,Yu H. The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement. Construction and Building Materials 2016:102:233–238. https://doi.org/10.1016/j.conbuildmat.2015.10.186
  17. Sheng G., Zheng L., Li P., Sun B., Li X., Zuo Y. The water resistance and mechanism of FeSO4 enhancing bamboo scraps/magnesium oxychloride cement composite. Construction and Building Materials 2022:317:125942. https://doi.org/10.1016/j.conbuildmat.2021.125942
  18. Du H., Li J., Ni W., Hou C., Liu W. The hydration mechanism of magnesium oxysulfate cement prepared by magnesium desulfurization byproducts. Journal of Materials Research and Technology 2022:17:1211–1220. https://doi.org/10.1016/j.jmrt.2022.01.070
  19. Tang S., Wei C., Cai R., Huang J., Chen E., Yuan J. In situ monitoring of pore structure of magnesium oxysulfate cement paste: Effect of MgSO4/H2O ratio. Journal of Industrial and Engineering Chemistry 2019:83:387–400. https://doi.org/10.1016/j.jiec.2019.12.012
  20. Erdman S. V., Gapparova K. M., Khudyakova T. M., Tomshina A. V. Magnesia binder preparation from local natural and technogenic raw materials. Procedia Chemistry 2014:10:310–313. https://doi.org/10.1016/j.proche.2014.10.052
  21. Zhang N., Yu H., Gong W., Liu T., Wang N., Tan Y., Wu C. Effects of low- and high-calcium fly ash on the water resistance of magnesium oxysulfate cement. Construction and Building Materials 2020:230:116951. https://doi.org/10.1016/j.conbuildmat.2019.116951
  22. Gu K., Chen B., Yu H., Zhang N., Bi W., Guan Y. Characterization of magnesium-calcium oxysulfate cement prepared by replacing MgSO4 in magnesium oxysulfate cement with untreated desulfurization gypsum. Cement and Concrete Composites 2021:121:104091. https://doi.org/10.1016/j.cemconcomp.2021.104091
  23. He P., Poon C. S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cement and Concrete Composites 2018:86:98–109. https://doi.org/10.1016/j.cemconcomp.2017.11.010
  24. Miryuk O. Magnesia Composites Formation as a Result of Furniture Production Wood Waste Processing. Environmental and Climate Technologies 2022:26:836–847. https://doi.org/10.2478/rtuect-2022-0063
  25. Li C., Meng X., Zhu J. Corrosion resistance of magnesium phosphate cement under long-term immersion in different solutions. Journal of Building Engineering 2023:66:105879. https://doi.org/10.1016/j.jobe.2023.105879
  26. Motaleb A. K. Z. M., Pranta A. D., Repon Md. R., Karim F. E. Preparation and characterization of MgO-based composites: Analysis of moisture, corrosion, and fungal resistance, and mechanical properties. Construction and Building Materials 2024:447:137926. https://doi.org/10.1016/j.conbuildmat.2024.137926
  27. Yu C., Wu Q., Ma, H., Yang N., Darkwah K. K., Akbar M. Study on Corrosion Resistance of Magnesium Phosphate Cement-based Coating Modified by Metakaolin. KSCE Journal of Civil Engineering 2024:28:302–314. https://doi.org/10.1007/s12205-023-0623-x
  28. Averina G., Koshelev V., Kramar L. Increasing the Resistance of Chloromagnesian Composites to Cracking Under Prolonged Water Saturation. Lecture Notes in Civil Engineering 2023:308:168–177. https://doi.org/10.1007/978-3-031-21120-1_17
  29. Miryuk O. Properties of magnesium composite materials based on technogenic raw materials. ARPN Journal of Engineering and Applied Sciences 2018:13(2):545–558.
  30. Guo T., Wang H., Yang H., Cai X., Ma Q., Yang S. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers. Construction and Building Materials 2017:150:844–850. https://doi.org/10.1016/j.conbuildmat.2017.06.024
  31. Chen X., Chen B., Chang J., Xu X., Sun E., Wang S., Guan Y. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate. Journal of Building Engineering 2023:67:106007. https://doi.org/10.1016/j.jobe.2023.106007
  32. Zhang X., Ge S., Wang H., Chen R. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement. Construction and Building Materials 2017:150:409–417. https://doi.org/10.1016/j.conbuildmat.2017.05.211
  33. Yu K., Guo Y., Zhang Y.X., Soe K. Magnesium oxychloride cement-based strain-hardening cementitious composite: Mechanical property and water resistance. Construction and Building Materials 2020:261:119970. https://doi.org/10.1016/j.conbuildmat.2020.119970
  34. Zhang M., Yu H., Ma H., Wu C., Zhu B., Li Y., Li L., Kang Y., Ding Z. Effect of 5·1·8 whiskers on the mechanical properties and microstructure of magnesium oxychloride cement. Composites Part B: Engineering 2025:292:112095. https://doi.org/10.1016/j.compositesb.2024.112095
  35. Zhao J., Xu J., Cui C., Yu C., Chang J., Hu Z., Bi W. Stability and phase transition of 5·1·7 phase in alkaline solutions. Construction and Building Materials 2020:258:119683. https://doi.org/10.1016/j.conbuildmat.2020.119683
DOI: https://doi.org/10.2478/rtuect-2025-0012 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 171 - 183
Submitted on: Apr 3, 2025
Accepted on: May 18, 2025
Published on: Jun 5, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Olga Miryuk, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.