Have a personal or library account? Click to login

Peculiarities of Modelling of Vapour-Liquid Flows of Bubble Structure

Open Access
|May 2025

References

  1. Debenedetti P. G. Metastable Liquids: Concepts and Principles. Princeton University Press, JSTOR, 1996. https://doi.org/10.2307/j.ctv10crfs5
  2. Yin S., Wang N., Wang N. Nucleation and flashing inception in flashing flows: A review and model comparison. International Journal of Heat and Mass Transfer 2020:146:118898. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118898
  3. Basok B., Davydenko B., Pavlenko A. M. Numerical network modeling of heat and moisture transfer through capillary-porous building materials. Materials 2021:14(8):1819. https://doi.org/10.3390/ma14081819
  4. Pavlenko A., Koshlak H. Production of porous material with projected thermophysical characteristics. Metallurgical and Mining Industry 2015:7(1):123–127.
  5. Pavlenko A., Usenko B., Koshlak A. Thermal conductivity of the gas in small space. Metallurgical and Mining Industry 2014:6(2):20–24.
  6. Pavlenko A. M., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912
  7. Pavlenko A., Szkarowski A., Janta-Lipiñska S. Research on burning of water black oil emulsions. Rocznik Ochrona Srodowiska 2014:16(1):376–385.
  8. Pavlenko A. M., Basok B. Kinetics of Water Evaporation from Emulsions. Heat Transfer Research 2005:36:425−430. https://doi.org/10.1615/HeatTransRes.v36.i5.100
  9. Pavlenko A. M., Basok B. Regularities of Boiling-Up of Emulsified Liquids. Heat Transfer Research 2005:36:419−424. https://doi.org/10.1615/HeatTransRes.v36.i5.90
  10. Pavlenko A. M., Basok B., Avramenko A. A. Heat Conduction of a Multi-Layer Disperse Particle of Emulsion. Heat Transfer Research 2005:36:55−61. https://doi.org/10.1615/HeatTransRes.v36.i12.80
  11. Wang Y., Cheng K., Xu J., Jing W., Huang H., Qin J. Thermodynamic and mass analysis of a novel two-phase liquid metal MHD enhanced energy conversion system for space nuclear power source. Energy 2024:308:132860. https://doi.org/10.1016/j.energy.2024.132860
  12. Domínguez-Lozoya J. C., Domínguez-Lozoya D. R., Cuevas S., Ávalos-Zúñiga R. A. MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review. Sustainability 2024:16(22):10041. https://doi.org/10.3390/su162210041
  13. Liu J., Pan J., Tang L., Su X. Modeling and analysis of steam-water two-phase flow distribution and wall temperature distribution in parallel heated pipes with different manifold types. Applied Thermal Engineering 2022:210:118387. https://doi.org/10.1016/j.applthermaleng.2022.118387
  14. Su Y., Li X., Wu X. Two-phase flow instability characteristics of HTGR Once Through Steam Generators. Nuclear Engineering and Design 2023:415:112697. https://doi.org/10.1016/j.nucengdes.2023.112697
  15. Zhiqiang Y., Li M., Cao B. A comprehensive review on microchannel heat sinks for electronics cooling. International Journal of Extreme Manufacturing 2024:6(2):022005. https://doi.org/10.1088/2631-7990/ad12d4
  16. Shimizu I., Matsumoto M. Free Energy Evaluation of Cavity Formation in Metastable Liquid Based on Stochastic Thermodynamics. Entropy 2024:26(8):700. https://doi.org/10.3390/e26080700
  17. Nath P. D., Rahman K. M., Al Bari Md. A. Thermal Hydraulic Analysis of a Nuclear Reactor Due to Loss of Coolant Accident with and Without Emergency Core Cooling System. Journal of Engineering Advancements 2020:1:(02):53–60. https://doi.org/10.38032/jea.2020.02.004
  18. Zhu X., Song Z., Pan X., Mei Y., Wang X., Zhu J., Jiang J. Morphological characteristics of flashing jet throughout superheated liquid release. Journal of Loss Prevention in the Process Industries 2020:66:104163. https://doi.org/10.1016/j.jlp.2020.104163
  19. Liu M., Huang Y., Wang Y., Zheng R., Fei J., Tian F., Gong H., Zhuo W. Experimental study of the depressurization phenomena of supercritical carbon dioxide system. Progress in Nuclear Energy 2024:168:104968. https://doi.org/10.1016/j.pnucene.2023.104968
  20. Zhang K., Yang T. A., Liao H. Y., Xie X. F., Chen R. H., Tian W. X., Su G. H., Qiu S. Z. Development of fuel rod behavior analysis code and its application to supercritical CO2 cooled nuclear reactor. Annals of Nuclear Energy 2021:164:108618. https://doi.org/10.1016/j.anucene.2021.108618
  21. Yang P., Ling W., Tian K., Zeng M., Wang Q. Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system. Energy 2023:270:126957. https://doi.org/10.1016/j.energy.2023.126957
  22. Wu M., Zhang J., Gui N., Zou Q., Yang X., Tu J., Jiang S., Liu Z. Advances in the modeling of multiphase flows and their application in nuclear engineering – A review. Exp. Comput. Multiph. Flow 2024:6:287–352. https://doi.org/10.1007/s42757-024-0202-5
  23. Liao Y., Lucas D. Computational modelling of flash boiling flows: A literature survey. International Journal of Heat and Mass Transfer 2017:111:246-265. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.121
  24. Ringstad K. E., Allouche Y., Gullo P., Ervik Å., Banasiak K., Hafner A. A detailed review on CO2 two-phase ejector flow modeling. Thermal Science and Engineering Progress 2020:20:100647. https://doi.org/10.1016/j.tsep.2020.100647
  25. Stanislau S., Karri K., Schmidt D. P., Vuorinen V., Hyvönen J., Kaario O. Impact of modelling assumptions in cavitating flow of simplified injector. International Journal of Multiphase Flow 2024:177:104847. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104847
  26. Koukouvinis P., Naseri H., Gavaises M. Performance of turbulence and cavitation models in prediction of incipient and developed cavitation. Int. J. Engine Res. 2017:18:(4):333–350. https://doi.org/10.1177/1468087416658604
  27. Yin S., Zhu M., Liu Q., Wang H. Two-phase modeling of micro-channel critical flows with inlet sub-cooling: A review and benchmark study. International Journal of Thermal Sciences 2022:179:107657. https://doi.org/10.1016/j.ijthermalsci.2022.107657
  28. Chung S.-M., Seo Y.-S., Jeon G.-M., Kim J.-W., Park J.-C. Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe. J. Ocean Eng. Technol. 2021:35(1):50–58. https://doi.org/10.26748/KSOE.2020.071
  29. Pothukuchi H., Kelm S., Patnaik B. S. V., Prasad B. V. S. S. S., Allelein H.-J. CFD modeling of critical heat flux in flow boiling: Validation and assessment of closure models. Applied Thermal Engineering 2019:150:651–665. https://doi.org/10.1016/j.applthermaleng.2019.01.030
  30. Vadlamudi S. R. G., Nayak A. K. CFD simulation of Departure from Nucleate Boiling in vertical tubes under high pressure and high flow conditions. Nuclear Engineering and Design 2019:352:110150. https://doi.org/10.1016/j.nucengdes.2019.110150
  31. Li J., Huang Y., Qiu Y., Wang S., Yang Q., Wang K., Zhu Y. Prediction of critical heat flux using different methods: A review from empirical correlations to the cutting-edge machine learning. International Communications in Heat and Mass Transfer 2025:160:108362. https://doi.org/10.1016/j.icheatmasstransfer.2024.108362
  32. Guion A., Afkhami S., Zaleski S., Buongiorno J. Simulations of microlayer formation in nucleate boiling. Int. J. Heat Mass Transf. 2018:127:1271–1284. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.041
  33. Kim Y.-S. Critical flow maps using an extended Henry–Fauske model. Annals of Nuclear Energy 2015:75:516–520. https://doi.org/10.1016/j.anucene.2014.08.070
  34. Xu H., Badea A. F., Cheng X. Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model. Annals of Nuclear Energy 2021:158:108286. https://doi.org/10.1016/j.anucene.2021.108286
  35. Liao H., Yang K., Liang Z., Hu H., Wang X., Wang H. A new paradigm in critical flow analysis: Combining Buckingham Pi theorem with neural network for improved predictions in microchannels. Chemical Engineering Science 2024:299:120483. https://doi.org/10.1016/j.ces.2024.120483
  36. An Y. J., Yoo K. H., Na M. G., Kim Y.-S. Critical flow prediction using simplified cascade fuzzy neural networks. Annals of Nuclear Energy 2020:136:107047. https://doi.org/10.1016/j.anucene.2019.107047
  37. He Y., Gu W., Wang D. Verification of Delayed Equilibrium Model for the R134a critical flow in a slit. Progress in Nuclear Energy 2024:174:105282. https://doi.org/10.1016/j.pnucene.2024.105282
  38. De Lorenzo M., Lafon Ph., Seynhaeve J.-M., Bartosiewicz Y. Benchmark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. International Journal of Multiphase Flow 2017:92:112–130. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004
  39. He Y., Gu W., Wang D. Combination of two-fluid model and delayed equilibrium model for the critical flow in a slit. Progress in Nuclear Energy 2024:177:105406. https://doi.org/10.1016/j.pnucene.2024.105406
  40. Xu H., Badea A. F., Cheng X. Analysis of two phase critical flow with a non-equilibrium model. Nuclear Engineering and Design 2021:372:110998. https://doi.org/10.1016/j.nucengdes.2020.110998
  41. Basok B., Davydenko B., Koshlak H., Novikov V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022:15(14):4843. https://doi.org/10.3390/ma15144843
  42. Jeongmin L., O'Neill L. E., Mudawar I. Computational prediction of key heat transfer mechanisms and hydrodynamic characteristics of critical heat flux (CHF) in subcooled vertical upflow boiling. International Journal of Heat and Mass Transfer 2020:161:120262. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120262
  43. Darby R. On two-phase frozen and flashing flows in safety relief values: Recommended calculation method and the proper use of the discharge coefficient. Journal of Loss Prevention in the Process Industries 2004:17(4):255–259. https://doi.org/10.1016/j.jlp.2004.04.001
  44. Marques-Riquelme E. F., Vandu C., Sluijterman A., Welch C. Discharge Coefficients for Thin Restriction Orifices Based on the Homogeneous Direct Integration Method. Industrial & Engineering Chemistry Research 2024:63(3):1578–1588. https://doi.org/10.1021/acs.iecr.3c02720
  45. Kim Y.-S. Critical flow maps using an extended Henry–Fauske model. Annals of Nuclear Energy 2015:75:516–520. https://doi.org/10.1016/j.anucene.2014.08.070
  46. Xu H., Badea A. F., Cheng X. Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model. Annals of Nuclear Energy 2021:158:108286. https://doi.org/10.1016/j.anucene.2021.108286
  47. Kim Y.-S. A proposed correlation for critical flow rate of water flow. Nuclear Engineering and Technology 2015:47(1):135–138. https://doi.org/10.1016/j.net.2014.11.004
  48. Ye Ji An, Kwae Hwan Yoo, Man Gyun Na, Yeon-Sik Kim. Critical flow prediction using simplified cascade fuzzy neural networks. Annals of Nuclear Energy 2020:136:107047. https://doi.org/10.1016/j.anucene.2019.107047
  49. Camarasa J., Crespo A., Montse V., Manel I., Jérôme B. A review of experimental studies on flow boiling instabilities mitigation through geometrical modifications. International Journal of Heat and Mass Transfer 2024:235:126014. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126014
  50. Binzhuo Xia, Fanting Xia, Kui Zhang, Ronghua Chen, Wenxi Tian, Suizheng Qiu. Experimental study of boiling critical heat flux with low mass flux under motion condition in a wetted perimeter equivalent rod. Applied Thermal Engineering 2025:258(Part B):124666. https://doi.org/10.1016/j.applthermaleng.2024.124666
  51. Li F., Xia G., Li R. Visual boiling experimental research based on lateral liquid supply structure. International Journal of Heat and Fluid Flow 2025:111:109664 https://doi.org/10.1016/j.ijheatfluidflow.2024.109664
  52. Kumar A., Abubakr B., Srivastava A. Non-intrusive experiments on coupled bubble dynamics and heat transfer during nucleate boiling under varying pressure conditions. Applied Thermal Engineering 2025:261:125102. https://doi.org/10.1016/j.applthermaleng.2024.125102
  53. Yin S., Zhu M., Liu Q., Wang H. Two-phase modeling of micro-channel critical flows with inlet sub-cooling: A review and benchmark study. International Journal of Thermal Sciences 2022:179:107657. https://doi.org/10.1016/j.ijthermalsci.2022.107657
  54. Long J., Yu B., Wang D., Shi J., Chen J. Calibration and validation of a modified non-equilibrium boiling model for transcritical flashing flow in two-phase R744 nozzles. International Journal of Refrigeration 2024:165:97–110. https://doi.org/10.1016/j.ijrefrig.2024.06.018
  55. Xu H., Badea A. F., Cheng Xu. Analysis of two phase critical flow with a non-equilibrium model. Nuclear Engineering and Design 2021:372:110998. https://doi.org/10.1016/j.nucengdes.2020.110998
  56. Xu H., Badea A. F., Cheng Xu. Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model. Annals of Nuclear Energy 2021:158:108286. https://doi.org/10.1016/j.anucene.2021.108286
  57. Giustini G. Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications – A Brief Review. Inventions 2020:5(3):47. https://doi.org/10.3390/inventions5030047
  58. Bouré J. A., Fritte A. A., Giot M. M., Réocreux M. L. Highlights of two-phase critical flow: On the links between maximum flow rates, sonic velocities, propagation and transfer phenomena in single and two-phase flows. International Journal of Multiphase Flow 1976:3:(1)1–22. https://doi.org/10.1016/0301-9322(76)90030-6
  59. Schmidt D. P., Gopalakrishnan S., Jasak H. Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow 2010:36(4):284–292. https://doi.org/10.1016/j.ijmultiphaseflow.2009.11.012
  60. Liao Y. CFD modelling of flashing flows for nuclear safety analysis: possibilities and challenges. Kerntechnik 2024:89(2):169–184. https://doi.org/10.1515/kern-2023-0090
  61. Tae-Wook Ha, Jae Jun Jeong, Byong-Jo Yun. Improvement of the MARS subcooled boiling model for a vertical upward flow. Nuclear Engineering and Technology 2019:51(4):977–986. https://doi.org/10.1016/j.net.2019.01.001
  62. Richter H. J. Separated two-phase flow model: application to critical two-phase flow. International Journal of Multiphase Flow 1983:9(5):511–530. https://doi.org/10.1016/0301-9322(83)90015-0
  63. Liao Y., Lucas D. Computational modelling of flash boiling flows: A literature survey. International Journal of Heat and Mass Transfer 2017:111:246–265. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.121
  64. Emil R. K., Yosr A., Paride G., Åsmund E., Krzysztof B., Armin H. A detailed review on CO2 two-phase ejector flow modeling. Thermal Science and Engineering Progress 2020:20:100647. https://doi.org/10.1016/j.tsep.2020.100647
  65. Xu H., Badea A. F., Cheng X. Analysis of two phase critical flow with a non-equilibrium model. Nuclear Engineering and Design 2021:372:110998. https://doi.org/10.1016/j.nucengdes.2020.110998
  66. Ruspini L. C., Marcel C. P., Clausse A. Two-phase flow instabilities: A review. International Journal of Heat and Mass Transfer 2014:71:521–548. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.047
  67. O'Neill L. E., Mudawar I. Review of two-phase flow instabilities in macro- and micro-channel systems. International Journal of Heat and Mass Transfer 2020:157:119738. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119738
  68. Du L., Hu W. An overview of heat transfer enhancement methods in microchannel heat sinks. Chemical Engineering Science 2023:280:119081. https://doi.org/10.1016/j.ces.2023.119081
  69. Wang B., Hu Y., He Y., Rodionov N., Zhu J. Dynamic instabilities of flow boiling in micro-channels: A review. Applied Thermal Engineering 2022:214:118773. https://doi.org/10.1016/j.applthermaleng.2022.118773
  70. Bodys J., Smolka J., Palacz M., Haida M., Banasiak K. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure. International Journal of Refrigeration 2020:114:32–46. https://doi.org/10.1016/j.ijrefrig.2020.02.015
  71. Li Y., Deng J. Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model. Energy 2022:238(Part C):121995. https://doi.org/10.1016/j.energy.2021.121995
  72. Xu H., Chen J., Ming P., Badea A., Cheng X. Study of the effect of virtual mass force on two-phase critical flow. Kerntechnik 2023:88(2):203–212. https://doi.org/10.1515/kern-2022-0072
  73. Pavlenko A., Koshlak H., Usenko B. Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry 2014:6(6):96–100.
  74. Pavlenko A., Koshlak H., Usenko B. The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry 2014:6(3):55–59.
  75. Weigand P., Oswald J., Bin Mohd Izahar M., Bikas G. A Novel Quasi-Dimensional Model for Transient Mixing Prediction in Two-Phase Multicomponent Sprays under Flash-Boiling Conditions. SAE Technical Paper 2024:01–2086. https://doi.org/10.4271/2024-01-2086
  76. Shi S., Wang S., Pan X., Ma Y., Jiang J. Study on mechanism and law of liquid overheating and explosive boiling caused by leakage. CIESC Journal 2019:70(10):4089–4098. https://doi.org/10.11949/j.issn.0438-1157.20190617
  77. Shang Q., Tian Zh., Wang S., Hua M., Pan X., Shi Sh., Jiang J. Experimental research on the two-phase explosive boiling mechanism of superheated liquid under different leakage conditions. Applied Thermal Engineering 2022:216:119080. https://doi.org/10.1016/j.applthermaleng.2022.119080
  78. Thulukkanam K. Heat Exchanger Design Handbook (2nd ed.). CRC Press, 2013. https://doi.org/10.1201/b14877
DOI: https://doi.org/10.2478/rtuect-2025-0009 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 128 - 136
Submitted on: Mar 25, 2025
Accepted on: Apr 9, 2025
Published on: May 4, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Anatoliy Pavlenko, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.