Have a personal or library account? Click to login

Green Chemistry Approaches for Processing of Coniferous Needles and Greenery to Implement Circular Bioeconomy Concepts in Forestry

Open Access
|Mar 2025

References

  1. European Commission. Directorate-General for Research and Innovation. A sustainable bioeconomy for Europe – Strengthening the connection between economy, society and the environment – Updated bioeconomy strategy, Publications Office, 2018. https://data.europa.eu/doi/10.2777/792130
  2. European Commission. Directorate-General for Research and Innovation. Innovating for sustainable growth – A bioeconomy for Europe, Publications Office, 2012. https://data.europa.eu/doi/10.2777/6462
  3. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New EU Forest Strategy: For Forests and the Forest-Based Sector; Brussels, 2013:17.
  4. Wohlgemuth R., Twardowski T., Aguilar A. Bioeconomy Moving Forward Step by Step – A Global Journey. New Biotechnology 2021:61:22–28. https://doi.org/10.1016/j.nbt.2020.11.006
  5. Stegmann P., Londo M., Junginger M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resources, Conservation & Recycling: X 2020:6:100029. https://doi.org/10.1016/j.rcrx.2019.100029
  6. Pajtík J., Konôpka B., Lukac M. Biomass Functions and Expansion Factors in Young Norway Spruce (Picea abies [L.] Karst) Trees. Forest Ecology and Management 2008:256(5):1096–1103. https://doi.org/10.1016/j.foreco.2008.06.013
  7. Klavins L., Almonaitytė K., Šalaševičienė A., Zommere A., Spalvis K., Vincevica-Gaile Z., Korpinen R., Klavins M. Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization. Molecules 2023:28(20):7085. https://doi.org/10.3390/molecules28207085
  8. Keeling C. I., Bohlmann J. Genes, Enzymes and Chemicals of Terpenoid Diversity in the Constitutive and Induced Defence of Conifers against Insects and Pathogens. New Phytologist 2006:170(4):657–675. https://doi.org/10.1111/j.1469-8137.2006.01716.x
  9. Mofikoya O. O. Chemical Fingerprinting of Conifer Needle Extracts by Ultrahigh-Resolution Mass Spectrometry. Dissertation, University of Eastern Finland: Joensuu, 2022.
  10. Beluns S., Platnieks O., Sevcenko J., Jure M., Gaidukova G., Grase L., Gaidukovs S. Sustainable Wax Coatings Made from Pine Needle Extraction Waste for Nanopaper Hydrophobization. Membranes (Basel) 2022:12(5):537. https://doi.org/10.3390/membranes12050537
  11. Mofikoya O. O., Mäkinen M., Jänis J. Compositional Analysis of Essential Oil and Solvent Extracts of Norway Spruce Sprouts by Ultrahigh-Resolution Mass Spectrometry. Phytochemical Analysis 2022:33(3):392–401. https://doi.org/10.1002/pca.3097
  12. Dziedzinski M., Kobus-Cisowska J., Szymanowska D., Stuper-Szablewska K., Baranowska M. Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules 2020:25(15):3527. https://doi.org/10.3390/molecules25153527
  13. Kelkar V. M., Geils B. W., Becker D. R., Overby S. T., Neary D. G. How to Recover More Value from Small Pine Trees: Essential Oils and Resins. Biomass Bioenergy 2006:30(4):316–320. https://doi.org/10.1016/j.biombioe.2005.07.009
  14. Bhardwaj K., Silva A. S., Atanassova M., Sharma R., Nepovimova E., Musilek K., Sharma R., Alghuthaymi M. A., Dhanjal D. S., Nicoletti M. et al. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021:26(10):3005. https://doi.org/10.3390/molecules26103005
  15. Popescu D. I., Frum A., Dobrea C. M., Cristea R., Gligor F. G., Vicas L. G., Ionete R. E., Sutan N. A., Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2024:16(1):52. https://doi.org/10.3390/pharmaceutics16010052
  16. Vanaga I., Gubernator J., Nakurte I., Kletnieks U., Muceniece R., Jansone B. Identification of Abies Sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules 2020:25(8):1801. https://doi.org/10.3390/molecules25081801
  17. IEA Bioenergy. Biorefineries: Adding Value to the Sustainable Utilisation of Biomass, 2009. [Online]. [Accessed https://www.ieabioenergy.com/blog/publications/biorefineries-adding-value-to-the-sustainable-utilisation-ofbiomass/
  18. Vu H. P., Nguyen L. N., Vu M. T., Johir M. A. H., McLaughlan R., Nghiem L. D. A Comprehensive Review on the Framework to Valorise Lignocellulosic Biomass as Biorefinery Feedstocks. Science of The Total Environment 2020:743:140630. https://doi.org/10.1016/j.scitotenv.2020.140630
  19. Horváth I. T., Anastas P. T. Innovations and Green Chemistry. Chemical Reviews 2007:107(6):2169–2173. https://doi.org/10.1021/cr078380v
  20. Anastas P., Eghbali N. Green Chemistry: Principles and Practice. Chemical Society Reviews 2010:39:301–312. https://doi.org/10.1039/B918763B
  21. Soultanov V. S., Kraeva L. A. Antibacterial Activity of Conifer Green Needle Complex Against Corynebacteria. Natural Product Communications 2020:15(1). https://doi.org/10.1177/1934578X19900611
  22. Hessel V., Tran N. N., Asrami M. R., Tran Q. D., Van Duc Long N., Escribà-Gelonch M., Tejada J. O., Linke S., Sundmacher K. Sustainability of Green Solvents – Review and Perspective. Green Chemistry 2022:24(2):410–437. https://doi.org/10.1039/D1GC03662A
  23. Torres-Valenzuela L. S., Ballesteros-Gómez A., Rubio S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-Food Waste. Food Engineering Reviews 2019:12(1):83–100. https://doi.org/10.1007/s12393-019-09206-y
  24. Alder C. M., Hayler J. D., Henderson R. K., Redman A. M., Shukla L., Shuster L. E., Sneddon H. F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chemistry 2016:18(13):3879–3890. https://doi.org/10.1039/C6GC00611F
  25. Klavins L., Mezulis M., Nikolajeva V., Klavins M. Composition, Sun Protective and Antimicrobial Activity of Lipophilic Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Extract Fractions. Learning with Technologies 2021:138:110784. https://doi.org/10.1016/j.lwt.2020.110784
  26. Environmental Impact of Solvent Recycling – CleanPlanet Chemical. [Online]. [Accessed 24.03.2024]. Available: https://www.cleanplanetchemical.com/environmental-impact/ (accessed Mar 24, 2024).
  27. Jun Y., Lee S. M., Ju H. K., Lee H. J., Choi H. K., Jo G. S., Kim Y. S. Comparison of the Profile and Composition of Volatiles in Coniferous Needles According to Extraction Methods. Molecules 2016:21(3). https://doi.org/10.3390/molecules21030363
  28. Mofikoya O. O., Mäkinen M., Jänis J. Chemical Fingerprinting of Conifer Needle Essential Oils and Solvent Extracts by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ACS Omega 2020:5(18):10543–10552. https://doi.org/10.1021/acsomega.0c00901
  29. Polar Protic and Aprotic Solvents – Chemistry LibreTexts. [Online]. [Accessed 24.03.2024]. Available: https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Intermolecular_Forces/Polar_Protic_and_Aprotic_Solvents
  30. Yara-Varón E., Fabiano-Tixier A. S., Balcells M., Canela-Garayoa R., Bily A., Chemat F. Is It Possible to Substitute Hexane with Green Solvents for Extraction of Carotenoids? A Theoretical versus Experimental Solubility Study. Royal Society of Chemistry Advances 2016:6(33):27750–27759. https://doi.org/10.1039/C6RA03016E
  31. Haque F., El-Nashar H. A. S., Akbor Md. S., Alfaifi M., Bappi M. H., Chowdhury A. K., Hossain M. K., El-Shazly M., Albayouk T., Saleh N., et al. Anti-Inflammatory Activity of d-Pinitol Possibly through Inhibiting COX-2 Enzyme: In-Vivo and in-Silico Studies. Frontiers Chemistry 2024:12:1366844. https://doi.org/10.3389/fchem.2024.1366844
  32. Hartmann H., Trumbore S. Understanding the Roles of Nonstructural Carbohydrates in Forest Trees – from What We Can Measure to What We Want to Know. New Phytologist 2016:211(2):386–403. https://doi.org/10.1111/nph.13955
  33. Raitanen J. E., Järvenpää E., Korpinen R., Mäkinen S., Hellström J., Kilpeläinen P., Liimatainen J., Ora A., Tupasela T., Jyske T. Tannins of Conifer Bark as Nordic Piquancy – Sustainable Preservative and Aroma? Molecules 2020:25(3). https://doi.org/10.3390/molecules25030567
  34. Klavins L., Perkons I., Mezulis M., Viksna A., Klavins M. Procyanidins from Cranberry Press Residues – Extraction Optimization, Purification and Characterization. Plants 2022:11(24):3517. https://doi.org/10.3390/plants11243517
DOI: https://doi.org/10.2478/rtuect-2025-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 97 - 113
Submitted on: Sep 12, 2024
Accepted on: Feb 26, 2025
Published on: Mar 12, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Marcis Mezulis, Lauris Arbidans, Linda Liene Millere, Maris Lauberts, Uldis Grinfelds, Maris Klavins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.