Have a personal or library account? Click to login

Experimental Study on Temperature-time Characteristics of Loess under the Freeze-Thaw Cycles

Open Access
|Mar 2025

References

  1. Chai L., Zhang L., Hao Z., Jiang L., Zhao S., Kou X. A new method to determine the freeze-thaw erosion. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2013:747–750. https://doi.org/10.1109/IGARSS.2013.6721265
  2. Tohm C., Bheemasetti T. V., Rahman R., Tabbasum T. Erosion potential of frost-susceptible soils subjected to freeze-thaw cycles. Geo-Congress 2023:402–411. https://doi.org/10.1061/9780784484654.041
  3. Sadeghi S. H., Najafinejad A., Gharemahmudli S., Darki B. Z., Behbahani A. M., Kheirfam H. Reduction in soil loss caused by a freeze-thaw cycle through inoculation of endemic soil microorganisms. Applied Soil Ecology 2021:157:103770. https://doi.org/10.1016/j.apsoil.2020.103770
  4. Nili M., Azarioon A., Hosseinian S. M. Novel internal-deterioration model of concrete exposed to freeze-thaw cycles. Journal of Materials in Civil Engineering 2017:29(9):04017132. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001978
  5. Li Z., Yang G., Liu H. The influence of regional freeze–thaw cycles on loess landslides: analysis of strength deterioration of loess with changes in pore structure. Water 2020:12(11):3047–3047. https://doi.org/10.3390/w12113047
  6. Chou Y., Wang L. Seasonal freezing-thawing process and hydrothermal characteristics of soil on the loess plateau, China. Journal of Mountain Science 2021:18(11):3082–3098. https://doi.org/10.1007/s11629-020-6599-9
  7. Abdi M. R., Hajalilue Bonab M., Jalilzadeh Z. Impact of various binders on loess durability subjected to different freeze-thaw regimes. European Journal of Environmental and Civil Engineering 2023:28(8):1924–1942. https://doi.org/10.1080/19648189.2023.2286470
  8. Mahedi M., Cetin B., Cetin K. Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil. Construction and Building Materials 2019:202: 449–464. https://doi.org/10.1016/j.conbuildmat.2018.12.210
  9. Lv Q., Zhang Z., Zhang T., Zhang T., Hao R., Guo Z., Huang X., Zhu J., Liu T. The trend of permeability of loess in Yili, China, under freeze–thaw cycles and its microscopic mechanism. Water 2021:13(22):3257–3257. https://doi.org/10.3390/w13223257
  10. Ren Y., Zhang W. Experimental study on freezing temperature of sodium sulfate saline soil under unidirectional freezing condition. Journal of Yangtze River Scientific Research Institute 2023:40(3):124–130. (In Chinese)
  11. Du Y., Korjakins A. Experimental study on the mechanical properties of green lightweight cement composite modified by nano additives. Environmental and Climate Technologies 2023:27(1):878–888. https://doi.org/10.2478/rtuect-2023-0064
  12. Bumanis G., Vaiciukyniene D. Mechanical properties of alkali activated material based on red clay and silica gel precursor. Environmental and Climate Technologies 2021:25(1):931–943. https://doi.org/10.2478/rtuect-2021-0070
  13. Argalis P., Sinka M., Andzs M., Korjakins A., Bajare D. Development of new bio-based building materials by utilising manufacturing waste. Environmental and Climate Technologies 2024:28(1):58–70. https://doi.org/10.2478/rtuect-2024-0006
  14. Wang F., Li G., Ma W., Mu Y., Zhou Z., Zhang J., Chen D., Zhao J. Effect of repeated wetting-drying-freezing-thawing cycles on the mechanic properties and pore characteristics of compacted loess. Advances in Civil Engineering 2020:1–8. https://doi.org/10.1155/2020/8839347
  15. Guo Z., Zhang Z., Mu Y., Li T., Zhang Y., Shi G. Effect of freeze-thaw on mechanical properties of loess with different moisture content in Yili, Xinjiang. Sustainability 2022:14(18):11357–11357. https://doi.org/10.3390/su141811357
  16. Shah R., Mir B. The freezing point of soils and the factors affecting its depression. In: Loon L. Y., Subramaniyan, M., Gunasekaran, K. (eds) Advances in Construction Management. Lecture Notes in Civil Engineering. Springer, Singapore. 2022:191:157–166. https://doi.org/10.1007/978-981-16-5839-6_14
  17. Arenson L., Sego D. The effect of salinity on the freezing of coarse-grained sands. Canadian Geotechnical Journal 2006:43(3):325–337. https://doi.org/10.1139/t06-006
  18. Liu Z. Freezing point of wet soil and its measurement. Journal of China Institute of Mining and Technology 1986:3:21–31. (In Chinese)
  19. Chuvilin E., Bukhanov B., Mukhametdinova A., Grechishcheva E. S., Sokolova N. S., Alekseev A. G., Istomin V. A. Freezing point and unfrozen water contents of permafrost soils: Estimation by the water potential method. Cold Regions Science and Technology 2022:196:103488. https://doi.org/10.1016/j.coldregions.2022.103488
  20. Xing S. Experiment study on measurements of soil frozen temperature. Journal of Taiyuan University of Technology 2004:35(4):385–409.
  21. Wu G., Bing H., Bu D. Experimental study on the relationship between saline soil and salt solution freezing temperature. Journal of Glaciology and Geocryology 2019:41(3):615–628. (In Chinese)
  22. Bing H., Ma W. Experimental study on freezing point of saline soil. Journal of Glaciology and Geocryology 2011:33(5):1106–1113. (In Chinese)
  23. Feng M., Chen L., Li D., Du C. Investigation into freezing point depression in soil caused by NaCl solution. Water 2020:12(8):2232–2232. https://doi.org/10.3390/w12082232
  24. Zhou J., Tan L., Wei C., Wei H. Experimental research on freezing temperature and super-cooling temperature of soil. Rock and Soil Mechanics 2015:36(3):777–785. http://dx.doi.org/10.16285/j.rsm.2015.03.023 (In Chinese)
  25. Wang Q., Qi J., Wang S., Xu J., Yang Y. Effect of freeze-thaw on freezing point of a saline loess. Cold Regions Science and Technology 2020:170:102922. https://doi.org/10.1016/j.coldregions.2019.102922
  26. Wang S., Wang Q., Xu J., Yang Y. Effect of freeze-thaw on freezing point and thermal conductivity of loess. Arabian Journal of Geosciences 2020:13(206). https://doi.org/10.1007/s12517-020-5186-2
  27. Huang Y., Ma W., He P., et al. Experimental study of thaw-settlement process of frozen soil under different load conditions. Journal of Glaciology and Geocryology 2021:43(1):184–194. (In Chinese)
  28. Shen Y., Wei X., Zhang L., et al. Hydrothermal migration of moraine soil and the mechanism of ice accumulation and frost swelling in alpine-cold mountain region. Journal of Engineering Geology 2022:30(5):1450–1465. https://doi.org/10.13544/j.cnki.jeg.2022-0449
  29. Pan P., Li J., Hao J., et al. Frost heaving and thawing settlement characteristics of saturated loess in Ningxia. Science Technology and Engineering 2016:16(18):230–233. (In Chinese)
  30. Fu Z. Study on the characteristics of water-heat transfer and settlement during the thawing process of frozen soil. Harbin Institute of Technology 2022.
  31. Zhou J., Tan L., Wei C., Wei H. Experimental research on freezing temperature and super-cooling temperature of soil. Rock and Soil Mechanics 2015:36(3):777–785. http://doi.org/10.16285/j.rsm.2015.03.023 (In Chinese)
  32. Qi J., Vermeer P. A., Cheng G. A review of the influence of freeze‐thaw cycles on soil geotechnical properties. Permafrost and Periglacial Processes 2006:17:245–252. https://doi.org/10.1002/ppp.559
DOI: https://doi.org/10.2478/rtuect-2025-0006 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 84 - 96
Submitted on: Sep 16, 2024
Accepted on: Feb 5, 2025
Published on: Mar 1, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Xueye Cao, Eryuan Zhang, Xiaopeng Bai, Jiaqiang Ji, Jielong Sun, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.