Have a personal or library account? Click to login
Carrier Material and Microbial Selection for Enhanced Methane Production in Ex-Situ Biomethanation Cover

Carrier Material and Microbial Selection for Enhanced Methane Production in Ex-Situ Biomethanation

Open Access
|Dec 2024

References

  1. Plana P. V., Noche B. A review of the current digestate distribution models: storage and transport. Presented at the Waste management 2016, Valencia, Spain, Jun. 2016:345–357. https://doi.org/10.2495/WM160311">https://doi.org/10.2495/WM160311
  2. Fetting C. The European Green Deal, ESDN Office, Vienna, 2020.
  3. Inaba R., Nagoya M., Kouzuma A., Watanabe K. Metatranscriptomic Evidence for Magnetite Nanoparticle-Stimulated Acetoclastic Methanogenesis under Continuous Agitation. Appl Environ Microbiol 2019:85(23). https://doi.org/10.1128/AEM.01733-19">https://doi.org/10.1128/AEM.01733-19
  4. Conrad R., Claus P., Casperb P. Stable isotope fractionation during the methanogenic degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse Fuchskuhle. Limnology & Oceanography 2010:55(5):1932–1942. https://doi.org/10.4319/lo.2010.55.5.1932">https://doi.org/10.4319/lo.2010.55.5.1932
  5. Galand P. E., Yrjälä K., Conrad R. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 2010:7(11):3893–3900. https://doi.org/10.5194/bg-7-3893-2010">https://doi.org/10.5194/bg-7-3893-2010
  6. Bumbiere K., Diaz Sanchez F. A., Pubule J., Blumberga D. Development and Assessment of Carbon Farming Solutions. Environmental and Climate Technologies 2022:26(1):898–916. https://doi.org/10.2478/rtuect-2022-0068">https://doi.org/10.2478/rtuect-2022-0068
  7. Lawson N., Alvarado-Morales M., Tsapekos P., Angelidaki I. Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants. Energies 2021:14(24):8252. https://doi.org/10.3390/en14248252">https://doi.org/10.3390/en14248252
  8. Akhlaghi N., Najafpour-Darzi G. A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy 2020:45(43):22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182">https://doi.org/10.1016/j.ijhydene.2020.06.182
  9. Antukh T., Lee I., Joo S., Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front. Bioeng. Biotechnol. 2022:10:833482. https://doi.org/10.3389/fbioe.2022.833482">https://doi.org/10.3389/fbioe.2022.833482
  10. Jensen M. B., Poulsen S., Jensen B., Feilberg A., Kofoed M. V. W. Selecting carrier material for efficient biomethanation of industrial biogas-CO2 in a trickle-bed reactor. Journal of CO2 Utilization 2021:51:101611. https://doi.org/10.1016/j.jcou.2021.101611">https://doi.org/10.1016/j.jcou.2021.101611
  11. Sekoai P. T. et al. Microbial cell immobilization in biohydrogen production: a short overview. Critical Reviews in Biotechnology 2018:38(2):157–171. https://doi.org/10.1080/07388551.2017.1312274">https://doi.org/10.1080/07388551.2017.1312274
  12. Kourkoutas Y., Bekatorou A., Banat I. M., Marchant R., Koutinas A. A. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology 2004:21(4):377–397. https://doi.org/10.1016/j.fm.2003.10.005">https://doi.org/10.1016/j.fm.2003.10.005
  13. Ashraf M. T., Triolo J. M., Yde L. Assay for testing packing materials for ex-situ bio-methanation. 2020
  14. Taurino R. et al. New composite materials based on glass waste. Composites Part B: Engineering 2013:45(1):497–503. https://doi.org/10.1016/j.compositesb.2012.09.017">https://doi.org/10.1016/j.compositesb.2012.09.017
  15. Green Gravels. [Online]. [Accessed 06.09.2023]. Available: https://gravels.ee/en/foam-glass-gravel/
  16. Kusnere Z., Spalvins K., Bataitis M. Wood Ash Filter Material Characterization as a Carrier Material for Ex-Situ Biomethanation of Biogas in Biotrickling Filter Reactors. Environmental and Climate Technologies 2023:27(1):92–102. https://doi.org/10.2478/rtuect-2023-0008">https://doi.org/10.2478/rtuect-2023-0008
  17. Hernández J., Lafuente J., Prado Ó. J., Gabriel D. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H 2 S, and NH 3. Journal of the Air & Waste Management Association 2013:63(4):462–471. https://doi.org/10.1080/10962247.2013.763305">https://doi.org/10.1080/10962247.2013.763305
  18. Spyridonidis A., Vasiliadou I. A., Stathopoulou P., Tsiamis A., Tsiamis G., Stamatelatou K. Enrichment of Microbial Consortium with Hydrogenotrophic Methanogens for Biological Biogas Upgrade to Biomethane in a Bubble Reactor under Mesophilic Conditions. Sustainability 2023:15(21):15247. https://doi.org/10.3390/su152115247">https://doi.org/10.3390/su152115247
  19. Smith N. W., Shorten P. R., Altermann E. H., Roy N. C., McNabb W. C. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes 2019:10(3):270–288. https://doi.org/10.1080/19490976.2018.1546522">https://doi.org/10.1080/19490976.2018.1546522.
  20. Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. Methanobacterium alcaliphilum sp. nov., an H2-Utilizing Methanogen That Grows at High pH Values. International Journal of Systematic Bacteriology 1986:36(3):380–382. https://doi.org/10.1099/00207713-36-3-380">https://doi.org/10.1099/00207713-36-3-380
  21. Ahmad J. et al. A Step towards Sustainable Self-Compacting Concrete by Using Partial Substitution of Wheat Straw Ash and Bentonite Clay Instead of Cement. Sustainability 2021:13(2):824. https://doi.org/10.3390/su13020824">https://doi.org/10.3390/su13020824
  22. Kusnere Z., Spalvins K., Blumberga D., Veidenbergs I. Packing materials for biotrickling filters used in biogas upgrading – biomethanation. Agronomy Research 2021:19. https://doi.org/10.15159/AR.21.082">https://doi.org/10.15159/AR.21.082
  23. Boone D. R., Worakit S., Mathrani I. M., Mah R. A. Alkaliphilic methanogens from high-pH lake sediments. Systematic and Applied Microbiology 1986:7(2–3):230–234. https://doi.org/10.1016/S0723-2020(86)80011-X">https://doi.org/10.1016/S0723-2020(86)80011-X
  24. Kusnere Z., Rupeika D., Spalvins K., Mika T. Turning Trash into Treasure: The Use of Vulcanized Ash Filters and Glass Waste for Renewable Energy. Environmental and Climate Technologies 2023:27(1):1049–1060. https://doi.org/10.2478/rtuect-2023-0076">https://doi.org/10.2478/rtuect-2023-0076
  25. Waldow V. Redox reactions involving resazurin, resorufin, and dihydroresorufin. Wikimedia, 2019.
  26. DSMZ. Cultivation of Anaerobes. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.
  27. Angelidaki I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology 2009:59(5):927–934. https://doi.org/10.2166/wst.2009.040">https://doi.org/10.2166/wst.2009.040
  28. Amodeo C. et al. How Different Are Manometric, Gravimetric, and Automated Volumetric BMP Results? Water 2020:12(6):1839. https://doi.org/10.3390/w12061839">https://doi.org/10.3390/w12061839
  29. Cord-Ruwisch R., Mercz T. I., Hoh C.-Y., Strong G. E. Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol. Bioeng. 1997:56(6):626–634. https://doi.org/10.1002/(SICI)1097-0290(19971220)56:6<;626::AID-BIT5>3.0.CO;2-P">https://doi.org/10.1002/(SICI)1097-0290(19971220)56:6<626::AID-BIT5>3.0.CO;2-P
  30. Hafner S. D. et al. Calculation of Methane Production from Manometric Measurements. Standard BMP Methods document 201, version 2.6. Available: https://www.dbfz.de/en/BMP (accessed on April 19, 2020).
  31. Chimenos J. M., Fernández A. I., Nadal R., Espiell F. Short-term natural weathering of MSWI bottom ash. Journal of Hazardous Materials 2000:79(3):287–299. https://doi.org/10.1016/S0304-3894(00)00270-3">https://doi.org/10.1016/S0304-3894(00)00270-3
DOI: https://doi.org/10.2478/rtuect-2024-0072 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Submitted on: Oct 28, 2024
Accepted on: Dec 2, 2024
Published on: Dec 30, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Zane Kusnere, Lauma Laipniece, Veronika Liberova, Dace Lauka, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.