Have a personal or library account? Click to login
Carbon Farming: A Systematic Literature Review on Sustainable Practices Cover

Carbon Farming: A Systematic Literature Review on Sustainable Practices

Open Access
|Dec 2024

References

  1. Commission presents recommendation for 2040 emissions reduction target to set the path to climate neutrality in 2050. [Online]. [Accessed 01.04.2024] Available: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_588
  2. Bartzas G., Doula M., Hliaoutakis A., Papadopoulos N. S., Tsotsolas N. Low carbon certification of agricultural production using field GHG measurements. Development of an integrated framework with emphasis on mediterranean products. Case Studies in Chemical and Environmental Engineering 2024:9:100666. https://doi.org/10.1016/j.cscee.2024.100666
  3. Kreft C., Angst M., Huber R., Finger R. Farmers’ social networks and regional spillover effects in agricultural climate change mitigation. Climatic Change 2023:176:8. https://doi.org/10.1007/s10584-023-03484-6
  4. Voltr V., Menšík L., Hlísníkovský L., Hruška M., Pokorný E., Pospíšilová L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021:11(4):779. https://doi.org/10.3390/agronomy11040779.
  5. Abdeldaym E. A., Traversa A., Cocozza C., Brunetti G. Effects of a 2‐year application of different residual biomasses on soil properties and potato yield. CLEAN – Soil, Air, Water 2018:46(12):1800261. https://doi.org/10.1002/clen.201800261
  6. Israel M. A., Amikuzuno J., Danso-Abbeam G. Assessing farmers’ contribution to greenhouse gas emission and the impact of adopting climate-smart agriculture on mitigation. Ecological Process 2020:9:51. https://doi.org/10.1186/s13717-020-00249-2
  7. Strapchuk S. І., Mykolenko O. P. Factors of Sustainable Intensification in Agriculture of Ukraine: Evidence from the Enterprises of the Kharkivska Oblast. Scientific Bulletin of Mukachevo State University Series Economics 2021:8:3:9–17. https://doi.org/10.52566/msu-econ.8(3).2021.9-17
  8. Armstrong J. H., Kamieniecki S. Sustainability Policy Research: A Review and Synthesis. Policy Studies Journal 2019:47(S1):S45–S65. https://doi.org/10.1111/psj.12320
  9. Promoting carbon farming through the CAP. EEB – The European Environmental Bureau [Online]. [Accessed 01.04.2024]. Available: https://eeb.org/library/promoting-carbon-farming-through-the-cap/
  10. Cuadros-Casanova I., Cristiano A., Biancolini D., Cimatti M., Sessa A. A., Mendez Angarita V. Y., Dragonetti C., Pacifici M., Rondinini C., Marco M. D. Opportunities and challenges for Common Agricultural Policy reform to support the European Green Deal. Conservation Biology 2023:37(3):e14052. https://doi.org/10.1111/cobi.14052
  11. Saikanth D. R. K., Kishore A. J., Sadineni T., Singh V., Upadhyay L., Kumar S., Panigrahi C. K. A review on exploring carbon farming as a strategy to mitigate greenhouse gas emissions. International Journal of Plant & Soil Science 2023:35(23):380–388. https://doi.org/10.9734/ijpss/2023/v35i234253.
  12. Tang K., He C., Ma C., Dong W. Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China. Australian Journal of Agricultural and Resource Economics 2019:63(3):575–592. https://doi.org/10.1111/1467-8489.12306.
  13. Doukas Y. E., Salvati L., Vardopoulos I. Unraveling the European agricultural policy sustainable development trajectory. Land 2023:12(9):1749. https://doi.org/10.3390/land12091749
  14. Gadzhiev N., Khasbulatova Z. S., Baysangurova A. A. Study of carbon sequestration processes in forestry on carbon farms. BIO Web of Conferences 2023:63:07006. https://doi.org/10.1051/bioconf/20236307006.
  15. Rijal S. Agroforestry system: approaches for climate change mitigation and adaptation. Big Data in Agriculture 2019:1(2):23–25. https://doi.org/10.26480/bda.02.2019.23.25.
  16. Bumbiere K., Sanchez F. A. D., Pubule J., Blumberga D. Development and assessment of carbon farming solutions. Environmental and Climate Technologies 2022:26(1):898–916. https://doi.org/10.2478/rtuect-2022-0068.
  17. Van Hoof S. Climate change mitigation in agriculture: barriers to the adoption of carbon farming policies in the EU. Sustainability 2023:15(13):10452. https://doi.org/10.3390/su151310452
  18. Dumbrell N. P., Kragt M., Gibson F. What carbon farming activities are farmers likely to adopt? A best – worst scaling survey. Land Use Policy 2016:54:29–37. https://doi.org/10.1016/j.landusepol.2016.02.002.
  19. Reidsma P., Wolf J., Kanellopoulos A., Schaap B., Mandryk M., Verhagen A., Ittersum M. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environmental Research Letters 2015:10(4):045004. https://doi.org/10.1088/1748-9326/10/4/045004
  20. Machmuller M. B., Kramer M. G., Cyle K. T., Hill N., Hancock D. W., Thompson A. Emerging land use practices rapidly increase soil organic matter. Nature Communications 2015:6(1):6995. https://doi.org/10.1038/ncomms7995
  21. Nevalainen O., Niemitalo O., Fer I., Juntunen A., Mattila T., Koskela O., Liski J. Towards agricultural soil carbon monitoring, reporting, and verification through the field observatory network (FiON). Geoscientific Instrumentation, Methods and Data Systems 2022:11(1):93–109. https://doi.org/10.5194/gi-11-93-2022
  22. Avasiloaiei D. I., Calara M., Brezeanu P. M., Gruda N. S., Brezeanu C. The evaluation of carbon farming strategies in organic vegetable cultivation. Agronomy 2023:13(9):2406. https://doi.org/10.3390/agronomy13092406
  23. Scotton M. Seed production of semi‐natural grasslands: amount and variability in an unfertilized upright brome and a fertilized tall oat-grass meadow. Grass and Forage Science 2020:75(4):409–423. https://doi.org/10.1111/gfs.12502
  24. Kasirao G., Himavarsha P., Tomar S., Sharma A. Carbon farming – the healing lungs of future agriculture: a review. Pollution Research 2023:42(3):331–334. https://doi.org/10.53550/pr.2023.v42i03.004
  25. Evans M. C., Carwardine J., Fensham R. J., Butler D., Wilson K. A., Possingham H. P., Martin T. G. Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science & Policy 2015:50:114–129. https://doi.org/10.1016/j.envsci.2015.02.003.
  26. Gan Y., Liang C., Chai Q., Lemke R., Campbell C. A., Zentner R. P. Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communications 2014:5(1):5012. https://doi.org/10.1038/ncomms6012
  27. Page M. J., Moher D., Bossuyt P. M., Boutron I., Hoffmann T., Mulrow C. D., McKenzie J. E. Prisma 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021:372:n160. https://doi.org/10.1136/bmj.n160
  28. Ardern C. L., Büttner F., Andrade R., Weir A., Ashe M. C., Holden S., Winters M. Implementing the 27 Prisma 2020 statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the persist (implementing prisma in exercise, rehabilitation, sports medicine and sports science) guidance. British Journal of Sports Medicine 2021:56(4):175–195. https://doi.org/10.1136/bjsports-2021-103987
  29. Aguinis H., Ramani R. S., Alabduljader N. Best-practice recommendations for producers, evaluators, and users of methodological literature reviews. Organizational Research Methods 2020:26(1):46–76. https://doi.org/10.1177/1094428120943281
  30. Commission sets the carbon farming initiative in motion - European Commission [Online]. [Accessed 01.04.2024]. Available: https://climate.ec.europa.eu/news-your-voice/news/commission-sets-carbon-farming-initiative-motion-2021-04-27_en
  31. Carbon Farming [Online]. [Accessed 01.04.2024]. Available: https://climate.ec.europa.eu/eu-action/sustainable-carbon-cycles/carbon-farming_en
  32. Cavalaris C. Rotational tillage practices to deal with soil compaction in carbon farming. Soil Systems 2023:7(4):90. https://doi.org/10.3390/soilsystems7040090
  33. Melero S., López-Garrido R., Murillo J., Moreno F. Conservation tillage: short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil and Tillage Research 2009:104(2):292–298. https://doi.org/10.1016/j.still.2009.04.001
  34. Álvaro‐Fuentes J., López M., Arrúe J., Moret D. Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agriculture Ecosystems & Environment 2009:134(3–4):211–217. https://doi.org/10.1016/j.agee.2009.07.001
  35. Li Y., Zhou L., Chang S., Cui S., Jagadamma S., Ghiglieno Q., Cai Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: implications for conservation agriculture. The Science of the Total Environment 2020:740:140147. https://doi.org/10.1016/j.scitotenv.2020.140147
  36. Kyriakarakos G. Carbon farming: bridging technology development with policy goals. Sustainability 2024:16(5):1903. https://doi.org/10.3390/su16051903
  37. Block J. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environmental Management 2024:74(2):332–349. https://doi.org/10.1007/s00267-024-01963-9
  38. Rosinger C., Keiblinger K., Bieber M., Bernardini L., Huber S., Mentler A., Bodner G. On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices. Geoderma 2023:433:116466. https://doi.org/10.1016/j.geoderma.2023.116466
  39. Haddaway N., Hedlund K., Jackson L., Kätterer T., Lugato E., Thomsen I., Isberg, P. How does tillage intensity affect soil organic carbon? A systematic review protocol. Environmental Evidence 2016:5:1. https://doi.org/10.1186/s13750-016-0052-0
  40. Mihelič R. Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage. Biology and Fertility of Soils 2024:60(3):341–355. https://doi.org/10.1007/s00374-024-01796-y
  41. Sae-Tun O., Keiblinger K., Rosinger C., Mentler A., Bodner G. Characterization of aggregate-stabilized dissolved organic matter release – a novel approach to determine soil health advances of conservation farming systems. Plant and Soil 2022:488(1–2):101–119. https://doi.org/10.1007/s11104-022-05713-w
  42. Pesce S. A modified version of RothC to model the direct and indirect effects of rice straw mulching on soil carbon dynamics, calibrated in two Valencian citrus orchards. Soil Systems 2024:8(1):12. https://doi.org/10.3390/soilsystems8010012
  43. Taghikhah F., Costanza R., Voinov A. DAESim: a dynamic agro-ecosystem simulation model for natural capital assessment. Ecological Modelling 2022:468:109930. https://doi.org/10.1016/j.ecolmodel.2022.109930
  44. Ghaley B., Rusu T., Sandén T., Spiegel H., Menta C., Visioli G., Henriksen C. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability 2018:10(3):794. https://doi.org/10.3390/su10030794
  45. Paul C., Bartkowski B., Dönmez C., Don A., Mayer S., Steffens M., Helming K. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023:330:117142. https://doi.org/10.1016/j.jenvman.2022.117142
  46. Longo M., Ferro N., Izaurralde R., Furlan L., Chiarini F., Morari F. Deep soc stock dynamics under contrasting management systems: is the epic model ready for carbon farming implementation? European Journal of Agronomy 2023:145:126771. https://doi.org/10.1016/j.eja.2023.126771
  47. Smith P. Olesen J. Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science 2010:148(5):543–552. https://doi.org/10.1017/s0021859610000341
  48. Mattila T. Do carbon farming practices build bioavailable nitrogen pools? Soil Use and Management 2023:39(4):1532– 1544. https://doi.org/10.1111/sum.12930
  49. Olsson L. Jerneck A. Farmers fighting climate change – from victims to agents in subsistence livelihoods. Wiley Interdisciplinary Reviews Climate Change 2010:1(3):363–373. https://doi.org/10.1002/wcc.44
  50. Begum K., Zornoza R., Farina R., Lemola R., Álvaro-Fuentes J., Cerasuolo M. Modeling soil carbon under diverse cropping systems and farming management in contrasting climatic regions in Europe. Frontiers in Environmental Science 2022:10. https://doi.org/10.3389/fenvs.2022.819162
  51. Alcalá-Herrera R., Moreno B., Aguirrebengoa M., Winter S., Robles-Cruz A.B., Ramos-Font M.E., Benítez E. Role of Agricultural Management in the Provision of Ecosystem Services in Warm Climate Vineyards: Functional Prediction of Genes Involved in Nutrient Cycling and Carbon Sequestration. Plants 2023:12(13):527. https://doi.org/10.3390/plants12030527
  52. Aguilera E., Guzmán G. I., Alonso A. M. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agronomy for Sustainable Development 2014:35(2):713–724. https://doi.org/10.1007/s13593-014-0267-9
  53. Ghiglieno I., Simonetto A., Facciano L., Tonni M., Donna P., Valenti L., Gilioli G. Comparing the carbon footprint of conventional and organic vineyards in northern Italy. Sustainability 2023:15(6):5252. https://doi.org/10.3390/su15065252
  54. Drexler S., Don A. Carbon sequestration potential in hedgerow soils: results from 23 sites in Germany. Geoderma 2024:445:116878. https://doi.org/10.1016/j.geoderma.2024.116878
  55. Attia A., Marohn C., Shawon A. R., de Kock A., Strassemeyer J., Feike T. Do rotations with cover crops increase yield and soil organic carbon? – A modeling study in southwest Germany. Agriculture, Ecosystems & Environment 2024:375:109167. https://doi.org/10.1016/j.agee.2024.109167
  56. Mattila T. J., Hagelberg E., Söderlund S., and Joona J. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil and Tillage Research 2022:215:105204. https://doi.org/10.1016/j.still.2021.105204
  57. Vicente-Vicente J. L., García‐Ruiz R., Francaviglia R., Aguilera E., Smith P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment 2016:235:204–214. https://doi.org/10.1016/j.agee.2016.10.024
  58. Kim J. H., Jobbágy E. G., Richter D., Trumbore S. E., Jackson R. B. Agricultural acceleration of soil carbonate weathering. Global Change Biology 2020:26(10):5988–6002. https://doi.org/10.1111/gcb.15207
  59. Doyeni M. O., Barčauskaitė K., Buneviciene K., Venslauskas K., Navickas K., Rubežius M., Tilvikienė V. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management Research: The Journal for a Sustainable Circular Economy 2022:41(3):701–712. https://doi.org/10.1177/0734242x221123484
  60. Herrera R., Moreno B., Aguirrebengoa M., Winter S., Robles-Cruz A. B., Ramos-Font M. E., Benítez E. Role of agricultural management in the provision of ecosystem services in warm climate vineyards: functional prediction of genes involved in nutrient cycling and carbon sequestration. Plants 2023:12(3):527. https://doi.org/10.3390/plants12030527
  61. Koppelmäki K., Lamminen M., Helenius J., Schulte R. P. Smart integration of food and bioenergy production delivers on multiple ecosystem services. Food and Energy Security 2021:10(2):351–367. https://doi.org/10.1002/fes3.279
  62. Paul C., Bartkowski B., Dönmez C., Don A., Mayer S., Steffens M., Helming, K. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023:330:117142. https://doi.org/10.1016/j.jenvman.2022.117142
  63. Block J. B., Danne M., Mußhoff O. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environmental Management 2024:74(2):332–349. https://doi.org/10.1007/s00267-024-01963-9
  64. Ruf T. Emmerling C. Biomass partitioning and nutrient fluxes in silphium perfoliatum and silage maize cropping systems. Nutrient Cycling in Agroecosystems 2022:124(3):389–405. https://doi.org/10.1007/s10705-022-10242-0
  65. Carter M. S., Hauggaard-Nielsen H., Heiske S., Jensen M. B., Thomsen S. T., Schmidt J. E., Ambus, P. Consequences of field N2O emissions for the environmental sustainability of plant‐based biofuels produced within an organic farming system. GCB Bioenergy 2011:4(4):435–452. https://doi.org/10.1111/j.1757-1707.2011.01132.x
  66. Wu F., Pfenninger S., Muller A. Land-free bioenergy from circular agroecology—a diverse option space and trade-offs. Environmental Research Letters 2024:19(4):044044. https://doi.org/10.1088/1748-9326/ad33d5
  67. Rosinger C., Bodner G., Bernardini L. G., Huber S., Mentler A., Sae-Tun O., Keiblinger, K. M. Benchmarking carbon sequestration potentials in arable soils by on-farm research on innovative pioneer farms. Plant and Soil 2022:488(1–2):137–156. https://doi.org/10.1007/s11104-022-05626-8
  68. Volungevičius J., Feiza V., Amalevičiūtė-Volungė K., Liaudanskienė I., Šlepetienė A., Kuncevičius A., Poškienė J. Transformations of different soils under natural and anthropogenized land management. Zemdirbyste-Agriculture 2019:106(1):3–14. https://doi.org/10.13080/z-a.2019.106.001
  69. Chen X., Hu Y., Xia Y., Zheng S., Ma C., Rui Y., Su Y. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology 2021:27(11):2478–2490. https://doi.org/10.1111/gcb.15595
  70. Sae-Tun O., Keiblinger K. M., Rosinger C., Mentler A., Mayer H., Bodner G. Characterization of aggregate-stabilized dissolved organic matter release - a novel approach to determine soil health advances of conservation farming systems. Plant and Soil 2022:488(1–2):101–119. https://doi.org/10.1007/s11104-022-05713-w
  71. Hirte J., Walder F., Heß J., Büchi L., Colombi T., Heijden M. G. v. d., Mayer J. Enhanced root carbon allocation through organic farming is restricted to topsoils. Science of the Total Environment 2021:755:143551. https://doi.org/10.1016/j.scitotenv.2020.143551
  72. Valujeva K., O’Sullivan L., Gutzler C., Fealy R., Schulte R. P. The challenge of managing soil functions at multiple scales: an optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland. Land Use Policy 2016:58:335–347. https://doi.org/10.1016/j.landusepol.2016.07.028
  73. Zanella A., Bolzonella C., Lowenfels J., Ponge J., Bouché M. B., Saha D., Fukuoka M. Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology 2018:122:271– 296. https://doi.org/10.1016/j.apsoil.2017.10.036
  74. Schulte R. P., O’Sullivan L., Vrebos D., Bampa F., Jones A., Staes J. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environmental Science & Policy 2019:100:113–125. https://doi.org/10.1016/j.envsci.2019.06.011
  75. Soinne H., Hyyrynen M., Jokubė M., Keskinen R., Hyväluoma J., Pihlainen S., Heikkinen J. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland. Journal of Environmental Management 2024:352:119945. https://doi.org/10.1016/j.jenvman.2023.119945
  76. Gantlett R., Bishop J., Jones H. E., Lukac M. Modern arable and diverse ley farming systems can increase soil organic matter faster than global targets. Ren Agriculture and Food Systems 2024:39. https://doi.org/10.1017/s1742170524000103
  77. Bessou C., Basset-Mens C., Tran T., Benoist A. LCA applied to perennial cropping systems: a review focused on the farm stage. The Int. Journal of Life Cycle Assessment 2012:18(2):340–361. https://doi.org/10.1007/s11367-012-0502-z
  78. Zucaro A., Forte A., Fagnano M., Bastianoni S., Basosi R., Fierro A. Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework. Integrated Environmental Assessment and Management 2015:11(3):397–403. https://doi.org/10.1002/ieam.1604
  79. Ledo A., Smith P., Zerihun A., Whitaker J., Vicente-Vicente J. L., Qin Z., Hillier J. Changes in soil organic carbon under perennial crops. Global Change Biology 2020:26(7):4158–4168. https://doi.org/10.1111/gcb.15120
  80. Means M., Crews T. E., Souza L. Annual and perennial crop composition impacts on soil carbon and nitrogen dynamics at two different depths. Renewable Agriculture and Food Systems 2022:37(5):437–444. https://doi.org/10.1017/s1742170522000084
  81. Adebiyi J. A., Olabisi L. S., Snapp S. S. Understanding perennial wheat adoption as a transformative technology: evidence from the literature and farmers. Renewable Agriculture and Food Systems 2015:31(2):101–110. https://doi.org/10.1017/s1742170515000150
  82. Scott E. I., Toensmeier E., Iutzi F., Rosenberg N., Lovell S. T., Jordan N. R., Leib E. B. Policy pathways for perennial agriculture. Frontiers in Sustainable Food Systems 2022:6. https://doi.org/10.3389/fsufs.2022.983398
  83. Danso-Abbeam G., Amin K. M., Ogundeji A. A. Enhancing household welfare through perennial crop production in northern Ghana. Sustainability 2022:15(1):451. https://doi.org/10.3390/su15010451
  84. Kantar M. B., Tyl C., Dorn K. M., Zhang X., Jungers J. M., Kaser J. M., Wyse D. L. Perennial grain and oilseed crops. Annual Review of Plant Biology 2016:67(1):703–729. https://doi.org/10.1146/annurev-arplant-043015-112311
  85. Herder M. d., Moreno G., Mosquera-Losada M. R., Palma J., Sidiropoulou A., Santiago-Freijanes J. J., Burgess P. J. Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment 2017:241:121–132. https://doi.org/10.1016/j.agee.2017.03.005
  86. Tefera Y. Potential of agroforestry for climate change mitigation through carbon sequestration: review paper. Agricultural Research & Technology 2019:22(3):556198. https://doi.org/10.19080/artoaj.2019.22.556196
  87. Torralba M., Fagerholm N., Burgess P. J., Moreno G., Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment 2016:230:150–161. https://doi.org/10.1016/j.agee.2016.06.002
  88. Ahmad F., Talukdar N. R., Biradar C., Dhyani S. K., Rizvi J. Harnessing the potentiality of farm landscape for trees based on satellite evaluation: a GIS modeling perspective. Anthropocene Science 2022:1(2):278–294. https://doi.org/10.1007/s44177-022-00025-1
  89. Visscher A. M., Meli P., Fonte S. J., Bonari G., Zerbe S., Wellstein C. Agroforestry enhances biological activity, diversity and soil‐based ecosystem functions in mountain agroecosystems of Latin America: a meta‐analysis. Global Change Biology 2023:30(1). https://doi.org/10.1111/gcb.17036
  90. Jalón S. G. d., Burgess P. J., Graves A., Moreno G., McAdam J., Pottier É., Vityi A. How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems 2017:92(4):829–848. https://doi.org/10.1007/s10457-017-0116-3
  91. Herder M. d., Moreno G., Mosquera-Losada M. R., Palma J., Sidiropoulou A., Santiago-Freijanes J. J., Burgess P. J. Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment 2017:241:121–132. https://doi.org/10.1016/j.agee.2017.03.005
  92. Sarkhot D. V., Berhe A. A., Ghezzehei T. A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environmental Quality 2012:41(4):1107–1114. https://doi.org/10.2134/jeq2011.0123
  93. Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. GCB Bioenergy 2015:8(3):512–523. https://doi.org/10.1111/gcbb.12266
  94. Li H., Lu Z., Ma H., Jin S. Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy 2013:33(3):941–946. https://doi.org/10.1002/ep.11867
  95. Wang L., Deng J., Yang X., Hou D. Role of biochar toward carbon neutrality. Carbon Research 2023:2(2). https://doi.org/10.1007/s44246-023-00035-7
  96. Liu Q., Liu B., Zhang Y., Hu T., Lin Z., Liu G., Xie Z. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biology 2019:25(6):2077–2093. https://doi.org/10.1111/gcb.14613
  97. Ghorbani M., Neugschwandtner R. W., Soja G., Konvalina P., Kopecký M. Carbon fixation and soil aggregation affected by biochar oxidized with hydrogen peroxide: considering the efficiency of pyrolysis temperature. Sustainability 2023:15(9):7158. https://doi.org/10.3390/su15097158
  98. Biederman L. A., Harpole W. S. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB Bioenergy 2012:5(2):202–214. https://doi.org/10.1111/gcbb.12037
  99. Wigan M. B. Impact of biochar application on chemical and microbial properties of soil. International Journal of Multidisciplinary: Applied Business and Education Research 2023:4(7):2503–2510. https://doi.org/10.11594/ijmaber.04.07.27
  100. Keskinen R., Hyväluoma J., Sohlo L., Help H., Rasa K. Fertilizer and soil conditioner value of broiler manure biochars. Biochar 2019:1(3):259–270. https://doi.org/10.1007/s42773-019-00020-7
  101. Hamad A. A. A., Ni L., Shaghaleh H., Elsadek E., Hamoud Y. A. Effect of carbon content in wheat straw biochar on N2O and CO2 emissions and pakchoi productivity under different soil moisture conditions. Sustainability 2023:15(6):5100. https://doi.org/10.3390/su15065100
  102. Tisserant A., Cherubini F. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 2019:8(12):179. https://doi.org/10.3390/land8120179
  103. Zhou H., Zhang D., Wang P., Liu X., Cheng K., Li L., Pan G. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agriculture, Ecosystems & Environment 2017:239:80–89. https://doi.org/10.1016/j.agee.2017.01.006
  104. Poeplau C., Don A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agriculture, Ecosystems & Environment 2015:200:33–41. https://doi.org/10.1016/j.agee.2014.10.024
  105. McCauley K., Barlow K. Regenerative agriculture: increasing plant diversity and soil carbon sequestration on agricultural landscapes. SURG Journal 2023:15(1). https://doi.org/10.21083/surg.v15i1.7196
  106. Lugato E., Bampa F., Panagos P., Montanarella L., Jones A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology 2014:20(11):3557–3567. https://doi.org/10.1111/gcb.12551
  107. Beillouin D., Ben-Ari T., Malézieux É., Seufert V., Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Change Biology 2021:27(19):4697–4710. https://doi.org/10.1111/gcb.15747
  108. Gaudin A. C. M., Tolhurst T. N., Ker A. P., Janovicek K., Tortora C., Martin R. C., Deen W. M. Increasing crop diversity mitigates weather variations and improves yield stability. Plos One 2015:10(2):0113261. https://doi.org/10.1371/journal.pone.0113261
  109. Weigel R., Koellner T., Poppenborg P., Bogner C. Crop diversity and stability of revenue on farms in central Europe: an analysis of big data from a comprehensive agricultural census in Bavaria. Plos One 2018:13(11):0207454. https://doi.org/10.1371/journal.pone.0207454
  110. Ryschawy J., Choisis N., Choisis J., Gibon A. Paths to last in mixed crop–livestock farming: lessons from an assessment of farm trajectories of change. Animal 2013:7(4):673–681. https://doi.org/10.1017/s1751731112002091
  111. Conant R. T., Cerri C. E. P., Osborne B. B., Paustian K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications 2017:27(2):662–668. https://doi.org/10.1002/eap.1473
  112. McSherry M. E., Ritchie M. E. Effects of grazing on grassland soil carbon: a global review. Global Change Biology 2013:19(5):1347–1357. https://doi.org/10.1111/gcb.12144
  113. Tessema B., Sommer R., Piikki K., Namirembe S., Notenbaert A. M. O., Tamene L., Paul B. K. Potential for soil organic carbon sequestration in grasslands in East African countries: a review. Grassland Science 2020:66(3):135–144. https://doi.org/10.1111/grs.12267
  114. Kleppel G. S., Frank D. A. Structure and functioning of wild and agricultural grazing ecosystems: a comparative review. Frontiers in Sustainable Food Systems 2022:6. https://doi.org/10.3389/fsufs.2022.945514
  115. Liebig M. A., Gross J., Kronberg S. L., Phillips R. Grazing management contributions to net global warming potential: a long‐term evaluation in the northern great plains. Journal of Environmental Quality 2010:39(3):799–809. https://doi.org/10.2134/jeq2009.0272
DOI: https://doi.org/10.2478/rtuect-2024-0068 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Submitted on: Jul 12, 2024
Accepted on: Nov 27, 2024
Published on: Dec 21, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Lelde Vistarte, Anna Kubule, Liga Rozentale, Jelena Pubule, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.