Have a personal or library account? Click to login
Electric vs. Internal Combustion Vehicles: A Multi-Regional Life Cycle Assessment Comparison for Environmental Sustainability Cover

Electric vs. Internal Combustion Vehicles: A Multi-Regional Life Cycle Assessment Comparison for Environmental Sustainability

Open Access
|Dec 2024

References

  1. Buekers J., Holderbeke M. V., Bierkens J., Buekers J. Health and environmental benefits related to electric vehicle introduction in EU countries. Transportation Research Part D: Transport and Environment 2014:33:26-38. https://doi.org/10.1016/j.trd.2014.09.002
  2. Bicer Y., Dincer I. Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles. Resources, Conservation and Recycling 2018:132:141–157. https://doi.org/10.1016/j.resconrec.2018.01.036
  3. Togun H. et. al. A review on recent advances on improving fuel economy and performance of a fuel cell hybrid electric vehicle. International Journal of Hydrogen Energy 2024:89:22–47. https://doi.org/10.1016/j.ijhydene.2024.09.298
  4. Ricardo Energy & Environment. Determining the environmental impacts of conventional and alternatively fuelled vehicles through LCA. European Commission: Brussels, 2020.
  5. IEA, World Energy Outlook 2024. IEA: Paris, 2024.
  6. Ricardo Energy & Environment. Assessing the impacts of selected options for regulating CO2 emissions from new passenger cars and vans after 2020. European Commission: Brussels, 2018.
  7. Johnston J., McConnell R., Palinkas L., Garcia E., Eckel S. P. California’s early transition to electric vehicles: Observed health and air quality co-benefits. Science of The Total Environment 2023:867:161761. https://doi.org/10.1016/j.scitotenv.2023.161761
  8. Karabasoglu O., Michalek J. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains. Energy Policy 2013:6:445–461. https://doi.org/10.1016/j.enpol.2013.03.047
  9. Suganya R., Joseph L. L., Sreedhar K. Understanding lithium-ion battery management systems in electric vehicles: Environmental and health impacts, comparative study, and future trends: A review. Results in Engineering 2024:24. https://doi.org/10.1016/j.rineng.2024.103047
  10. Morales V. V., Tietge U., Dornoff J. On the way to ‘real-world’ CO2 values? The European passenger car market after 5 years of WLTP. International Council on Clean Transportation Europe Jan. 30, 2024.
  11. BloombergNEF. Zero-Emission Vehicles Factbook. A BloombergNEF special report prepared for COP28, 2023.
  12. Transport & Environment. Clean and lean. Battery metals demand from electrifying passenger transport. European Federation for Transport and Environment AISBL, 2023.
  13. European Environment Agency. Use of renewable energy for transport in Europe, 2024.
  14. Bieker G. A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. International Council on Clean Transportation, 2021.
  15. Qiao Q., Zhao F., Liu Z., Hao H., H Xin., Przesmitzki S. V., Amer A. A. Life cycle cost and GHG emission benefits of electric vehicles in China. Transportation Research Part D: Transport and Environment 2020:86:102418. https://doi.org/10.1016/j.trd.2020.102418
  16. Ayodele B., Mustapa S. Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis. Sustainability 2020:12(6):2387. https://doi.org/10.3390/su12062387
  17. Zheng G., Peng Z. Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit). Energy Report 2021:7:1203–1216. https://doi.org/10.1016/j.egyr.2021.02.039
  18. Scedrovs A., Mendzins K., Barisa A., Feofilovs M. Electrifying the Last Mile Delivery by Eco-Efficiency Analysis: Case Study of Latvia. Environmental and Climate Technologies 2024:28(1):367–378. https://doi.org/10.2478/rtuect-2024-0029
  19. Hauschild M. Z., Rosenbau R. K., Olsen S. I. Life cycle assessment, Springer International Publishing, 2018.
  20. Johannes D., Weiss M., Helmers E. Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions. Sustainability 2020:12(3):1241. https://doi.org/10.3390/su12031241
  21. Bolonio D., Ortega M. F., Garcia-Martinez M.-J., Naranjo G. P.-S. Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain. Journal of Cleaner Production 2021:291:125883. https://doi.org/10.1016/j.jclepro.2021.125883
  22. Burchart-Korol D., Jursova S., Korol J., Pustejovska P., Blaut A. Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. Journal of Cleaner Production 2018:202:476–487. https://doi.org/10.1016/j.jclepro.2018.08.145
  23. Desreveaux A., Bouscayrol A., Trigui R., Hittinger E., Castex E., Sirbu G. M. Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles. Energy 2023:268:126637. https://doi.org/10.1016/j.energy.2023.126637
  24. Cantor C. No Doubt About It: EVs Really Are Cleaner Than Gas Cars. BloombergNEF, 2024.
  25. Hoekstra A. Y., Holmatov B. The Environmental Footprint of Transport by Car Using Renewable Energy. Earth's Future 2020:8(2):e2019EF001428. https://doi.org/10.1029/2019EF001428
DOI: https://doi.org/10.2478/rtuect-2024-0065 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Submitted on: May 5, 2024
Accepted on: Nov 5, 2024
Published on: Dec 21, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Kārlis Mendziņš, Aiga Barisa, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.