Barkia I., Saari N., Manning S. R. Microalgae for high-value products towards human health and nutrition. Marine Drugs 2019:17(5):1–29. https://doi.org/10.3390/md17050304
Merlo A., Conti F. Bioactive Derivatives from Algae: Properties and Applications in Pharmaceuticals. Environ. Clim. Technol. 2023:27(1):438–449. https://doi.org/10.2478/rtuect-2023-0032
Fernández F. G. A., Reis A., Wijffels R. H., Barbosa M., Verdelho V., Llamas B. The role of microalgae in the bioeconomy. N. Biotechnol. 2021:61:99–107. https://doi.org/10.1016/j.nbt.2020.11.011
Ahmad I., Abdullah N., Koji I., Yuzir A., Eva Muhammad S. Evolution of Photobioreactors: A Review based on Microalgal Perspective. IOP Conf. Ser. Mater. Sci. Eng. 2021:1142(1):012004. https://doi.org/10.1088/1757-899X/1142/1/012004
Hu J. Y., Sato T. A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energy Convers. Manag. 2017:133:558–565. https://doi.org/10.1016/j.enconman.2016.11.008
Lu H. et al. Exploration of flashing light interaction effect on improving biomass, protein, and pigments production in photosynthetic bacteria wastewater treatment. J. Clean. Prod. 2021:348:131304. https://doi.org/10.1016/j.jclepro.2022.131304
Singh S. P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015:50:431–444. https://doi.org/10.1016/j.rser.2015.05.024
Abou-Shanab R. A. I., Ji M. K., Kim H. C., Paeng K. J., Jeon B. H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manage. 2013:115:257–264. https://doi.org/10.1016/j.jenvman.2012.11.022
Dahlin L. R. et al. Down-selection and outdoor evaluation of novel, halotolerant algal strains for winter cultivation. Front. Plant Sci. 2018:9:1–10. https://doi.org/10.3389/fpls.2018.01513
Ievina B., Romagnoli F. The potential of Chlorella species as a feedstock for bioenergy production: A review. Environ. Clim. Technol. 2020:24(2):203–220. https://doi.org/10.2478/rtuect-2020-0067
Fasaei F., Bitter J. H., Slegers P. M., van Boxtel A. J. B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research 2018:31:347–362. https://doi.org/10.1016/j.algal.2017.11.038
Zhao Z., Mertens M., Li Y., Muylaert K., Vankelecom I. F. J. A highly efficient and energy-saving magnetically induced membrane vibration system for harvesting microalgae. Bioresour. Technol. 2020:300:122688. https://doi.org/10.1016/j.biortech.2019.122688
Romagnoli F., Ievina B., Perera W. A. A. R. P., Ferrari D. Novel stacked modular open raceway ponds for microalgae biomass cultivation in biogas plants: Preliminary design and modelling. Environ. Clim. Technol. 2020:24(2):1–19. https://doi.org/10.2478/rtuect-2020-0050
Romagnoli F., Thedy A., Ievina B., Feofilovs M. Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project. Environ. Clim. Technol. 2023:27(1):117–136. https://doi.org/10.2478/rtuect-2023-0010
Romagnoli F. et al. Microalgae cultivation in a biogas plant: Environmental and economic assessment through a life cycle approach. Biomass and Bioenergy 2024:182:107116. https://doi.org/10.1016/j.biombioe.2024.107116
Musie W., Gonfa G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023:9(8):e18685. https://doi.org/10.1016/j.heliyon.2023.e18685
Borowitzka M. A. Commercial-Scale Production of Microalgae for Bioproducts. In Blue Biotechnology: Production and use of marine molecules, La Barre S., Bates S. (Eds.), Vol. 1. Weinheim: Wiley-VCH, 2018:33–85. https://doi.org/10.1002/9783527801718.ch2
Cheregi O., Ekendahl S., Engelbrektsson J., Strömberg N., Godhe A., Spetea C. Microalgae biotechnology in Nordic countries – the potential of local strains. Physiol. Plant. 2019:166(1):438–450. https://doi.org/10.1111/ppl.12951
Ievina B., Romagnoli F. Microalga Chlorella vulgaris 211/11j as a promising strain for low temperature climate. J. Appl. Phycol. 2024:36:1117–1124. https://doi.org/10.1007/s10811-024-03192-3
Lizzul A. M., Lekuona-Amundarain A., Purton S., Campos L. C. Characterization of chlorella sorokiniana, UTEX 1230. Biology (Basel) 2018:7(2):1–12. https://doi.org/10.3390/biology7020025
Kobayashi N. et al. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 2013:150:377–386. https://doi.org/10.1016/j.biortech.2013.10.032
Psachoulia P., Chatzidoukas C., Samaras P. Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water (Switzerland) 2024:16(3):485. https://doi.org/10.3390/w16030485
Franco M. C., Buffing M. F., Janssen M., Lobato C. V., Wijffels R. H. Performance of Chlorella sorokiniana under simulated extreme winter conditions. J. Appl. Phycol. 2012:24(4):693–699. https://doi.org/10.1007/s10811-011-9687-y
Vonshak A., Novoplansky N. Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSII and improved resistance to photoinhibition. J. Phycol. 2008:44(4):1071–1079. https://doi.org/10.1111/j.1529-8817.2008.00546.x
L. Ministru kabinets. Ministru kabineta noteikumi Nr.34. Noteikumi par piesārņojošo vielu emisiju ūdenī, Rīgā 2002.gada 22.janvārī. (Republic of Latvia Cabinet Regulation No. 34, Regulations Regarding Discharge of Polluting Substances into Water Adopted 22 January 2002). 2002. In Latvian.
Almomani F. A., Örmeci B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 2016:95:280–289. https://doi.org/10.1016/j.ecoleng.2016.06.038
Lee S. A., Lee N., Oh H. M., Ahn C. Y. Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. J. Microbiol. Biotechnol. 2019:29(9):1434–1443. https://doi.org/10.4014/jmb.1905.05034
Wang H. et al. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. Bioresour. Technol. 2023:370:128483. https://doi.org/10.1016/j.biortech.2022.128483