Have a personal or library account? Click to login
Acoustic Properties of Recycled Polyurethane Foam Waste and Polyvinyl Acetate Composites Cover

Acoustic Properties of Recycled Polyurethane Foam Waste and Polyvinyl Acetate Composites

Open Access
|Dec 2024

References

  1. Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies – A review. Applied Materials Today 2021:24:101141. https://doi.org/10.1016/j.apmt.2021.101141
  2. Venckus Ž., Grubliauskas R., Venslovas A. The Research on the Effectiveness of the Inclined Top Type of a Noise Barrier. Journal of Environmental Engineering and Landscape Management 2012:20:155–162. https://doi.org/10.3846/16486897.2011.634068
  3. Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Composites Communications 2018:10:25–35. https://doi.org/10.1016/j.coco.2018.05.001
  4. Martellotta F., Cannavale A., De Matteis V., Ayr U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics 2018:141:71–78. https://doi.org/10.1016/j.apacoust.2018.06.022
  5. Ramam R. S., Pujari S., Chigilipalli B. K., Naik B. D., Kottala R. K., Kantumuchu V. C. Fabrication and optimization of acoustic properties of natural fiber reinforced composites. International Journal on Interactive Design and Manufacturing 2024:18:3681–3689. https://doi.org/10.1007/s12008-023-01496-1
  6. Strazdas E., Januševičius T. Evaluation and Analysis of Sound Absorption across Various Types of Hemp Fibre. Environmental and Climate Technologies 2024:28(1):269–85. https://doi.org/10.2478/rtuect-2024-0022
  7. Ruzickij R., Grubliauskas R. Sound Absorption: Dependence of Rubber Particles Impurities in Tyre Textile Fibre. Environmental and Climate Technologies 2022:26(1):331–40. https://doi.org/10.2478/rtuect-2022-0025
  8. Ružickij R., Romagnoli F., Grubliauskas R. Waste Tyre Textile Fibre Composite Material: Acoustic Performance and Life Cycle Assessment. Sustainability (Switzerland) 2024:16(15):6281. https://doi.org/10.3390/su16156281
  9. Astrauskas T., Grubliauskas R. Method to Recycle Paper Sludge Waste: Production of Panels for Sound Absorption Applications. Environmental and Climate Technologies 2020:24(3):364–372. https://doi.org/10.2478/rtuect-2020-0109
  10. Naimušin A., Januševičius T. Development and Research of Recyclable Composite Metamaterial Structures Made of Plastic and Rubber Waste to Reduce Indoor Noise and Reverberation. Sustainability (Switzerland) 2023:15(2):1731. https://doi.org/10.3390/su15021731
  11. Zhu S., Cheng D., Tang X. Recent advances on the fabrication and application of sound absorption coating-based textile composites. Textile Research Journal 2024:94(17–18):2044–2062. https://doi.org/10.1177/00405175241231827
  12. Universidad de Burgos. REcovery of POLYurethane for reUSE in eco-efficient materials, 2020.
  13. Ko J., Zarei M., Lee S. G., Cho K. Single-Phase Recycling of Flexible Polyurethane Foam by Glycolysis and Oxyalkylation: Large-Scale Industrial Evaluation. ACS Sustainable Chemistry & Engineering 2023:11(27):10074–10082. https://doi.org/10.1021/acssuschemeng.3c01927
  14. Haigh R. A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems. Construction Materials 2024:4(2):401–424. https://doi.org/10.3390/constrmater4020022
  15. Banik J., Chakraborty D., Rizwan M., Shaik A. H., Chandan M. R. Review on disposal, recycling and management of waste polyurethane foams: A way ahead. Waste Management & Research 2023:41(6):1063–1080. https://doi.org/10.1177/0734242X221146082
  16. International Organization for Standardization [ISO]. Acoustics – Determination of acoustic properties in impedance tubes. Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance ISO 10534-2 2023.
  17. American Society for Testing and Materials. Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method. ASTM E2611-19 2024.
  18. Nechita P., Năstac S. Foam-formed cellulose composite materials with potential applications in sound insulation. J Compos Mater 2018:52:747–754. https://doi.org/10.1177/0021998317714639
  19. Gliscinska E., De Amezaga J. P., Michalak M., Krucinska I. Green sound-absorbing composite materials of various structure and profiling. Coatings 2021:11(4):407. https://doi.org/10.3390/coatings11040407
  20. Zhang J., Shen Y., Jiang B., Li Y. Sound absorption characterization of natural materials and sandwich structure composites. Aerospace 2018:5(3):75. https://doi.org/10.3390/aerospace5030075
  21. Li X., Peng Y., He Y., Zhang C., Zhang D., Liu Y. Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials 2022:12(7):1123. https://doi.org/10.3390/nano12071123
  22. Ružickij R., Kizinievič O., Grubliauskas R., Astrauskas T. Development of composite acoustic panels of waste tyre textile fibres and paper sludge. Sustainability (Switzerland) 2023:15(3):2799. https://doi.org/10.3390/su15032799
DOI: https://doi.org/10.2478/rtuect-2024-0058 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Submitted on: Apr 11, 2024
Accepted on: Oct 30, 2024
Published on: Dec 3, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Jonas Tubelis, Tomas Astrauskas, Miķelis Dzikēvičs, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.