Have a personal or library account? Click to login
Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation Cover

Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation

Open Access
|Nov 2024

References

  1. Milkov A. V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 2004:66(3–4):183–197. https://doi.org/10.1016/j.earscirev.2003.11.002
  2. Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396
  3. Pavlenko A., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016
  4. Pavlenko A. Application of Synthesized Hydrates in the National Economy. Environmental and Climate Technologies 2024:28(1):149–164. https://doi.org/10.2478/rtuect-2024-0013
  5. Boswell R., Hancock S., Yamamoto K., Collett T., Pratap M., Lee S. Natural Gas Hydrates: Status of Potential as an Energy Resource. Future Energy 3rd ed.; Improved Sustainable and Clean Options for our Planet; Elsevier: Amsterdam, The Netherlands, 2020:111–131. https://doi.org/10.1016/B978-0-08-102886-5.00006-2
  6. Veluswamy H. P, Kumar A., Kumar R., Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002
  7. Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059
  8. Yu H., Chen C., Wang F. Kinetic Promotional Effect of Methane Hydrate Formation in the Presence of Leucine. Energy & Fuels 2024:38(10):8641–8648. https://doi.org/10.1021/acs.energyfuels.4c00183
  9. Sharma D., Sowjanya Y., Chari V. D., Prasad P. Methane storage in mixed hydrates with tetrahydrofuran. Indian J Chem Technol. 2014:21:114–119.
  10. Delahaye A., Fournaison L., Marinhas S., Chatti I., Petitet J. P., Dalmazzone D., Fürst W. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind. Eng. Chem. Res. 2006:45:391–397. https://doi.org/10.1021/ie050356p
  11. Pavlenko A. M., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912
  12. Kipyoung K., Youtaek K., Hokeun K. Recent advances in natural gas hydrate. Carriers for gas transportation. Journal of Advanced Marine Engineering and Technology 2014:38(5):589–601. https://doi.org/10.5916/jkosme.2014.38.5.589
  13. Filarsky F., Schmuck C., Schultz H. J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019:91(12):85–91. https://doi.org/10.3390/molecules26123615
  14. Brown T. D., Taylor C. E., Bernardo M. P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010:3(6):1154–1175. https://doi.org/10.3390/en3061154
  15. Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338
  16. Cheng C., Wang F., Tian Y., Wu X., Zheng J., Zhang J., Li L., Yang P.; Zhao J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020:117:109492. https://doi.org/10.1016/j.rser.2019.109492
  17. Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010
  18. Pavlenko A., Basok B. I. Kinetics of Water Evaporation from Emulsions. Heat Transfer Research 2005:36(5):425–430. https://doi.org/10.1615/HeatTransRes.v36.i5.100
  19. Chen B., Sun H., Li K., Wang D., Yang, M. Experimental Investigation of Natural Gas Hydrate Production Characteristics via Novel Combination Modes of Depressurization with Water Flow Erosion. Fuel 2016:252:295–303. https://doi.org/10.1016/j.fuel.2019.04.120
  20. Xu H., Kong W., Yang F. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Natural Gas Industry B 2019:6(2):159–167. https://doi.org/10.1016/j.ngib.2018.07.005
  21. Veluswamy H. P., Hong Q. W., Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Crystal Growth & Design 2016:16:5932–5945. https://doi.org/10.1021/acs.cgd.6b00997
  22. Gnanendran N., Amin R. Modelling hydrate formation kinetics of a hydrate promoter – water – natural gas system in a semibatch spray reactor. Chem. Eng. Sci. 2004:59(18):3849–3863. https://doi.org/10.1016/j.ces.2004.06.009
  23. Veluswamy H. P., Kumar S., Kumar R., Rangsunvigit P., Linga P. Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel 2016:182:907–919. https://doi.org/10.1016/j.fuel.2016.05.068
  24. Sowjanya Y., Prasad P. S. R. Formation kinetics & phase stability of double hydrates of C4H8O and CO2/CH4: A comparison with pure systems. J. Nat. Gas Sci. Eng. 2014:18:58–63. https://doi.org/10.1016/j.jngse.2014.02.001
  25. Veluswamy H. P., Wong A. J. H., Babu P., Kumar R., Kulprathipanja S., Rangsunvigit P., Linga P. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem. Eng. J. 2016:290:161–173. https://doi.org/10.1016/j.cej.2016.01.026
  26. Ke W., Svartaas T. M., Chen D. A review of gas hydrate nucleation theories and growth models. Journal of Natural Gas Science and Engineering 2019:61:169–196. https://doi.org/10.1016/j.jngse.2018.10.021
  27. Pavlenko A. Self-preservation Effect of Gas Hydrates. Rocznik Ochrona Środowiska 2021:23:346–355. https://doi.org/10.54740/ros.2021.023
  28. Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2019:74(12). https://doi.org/10.2516/ogst/2018092
  29. Stern L. A., Circone S., Kirby S. H., Durham W. B. Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Canadian Journal of Physics 2003:81(1–2):271–283. https://doi.org/10.1139/p03-018
  30. Kumar A., Bhattacharjee G., Kulkarni B. D., Kumar R. Role of Surfactants in Promoting Gas Hydrate Formation. Industrial & Engineering Chemistry Research 2015:54(49):12217–12232. https://doi.org/10.1021/acs.iecr.5b03476
  31. Luan H., Liu M., Shan Q., Jiang Y., Yan P., Du X. Experimental Study on the Effect of Mixed Thermodynamic Inhibitors with Different Concentrations on Natural Gas Hydrate Synthesis. Energies 2024:17(9):2078. https://doi.org/10.3390/en17092078
  32. Wei Y., Maeda N. Dry Water as a Promoter for Gas Hydrate Formation: A Review. Molecules 2023:28(9):3731. https://doi.org/10.3390/molecules28093731
  33. Pavlenko A., Koshlak H., Usenko B. Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry 2014:6:96–100.
  34. Lan X., Chen J., Li D., Zheng J., Linga P. Gas storage via clathrate hydrates: Advances, challenges, and prospects. Gas Science and Engineering 2024:129:205388. https://doi.org/10.1016/j.jgsce.2024.205388
  35. Gambelli A. M. Introduction to natural gas hydrate formation and applications, Advances in Natural Gas: Formation, Processing, and Applications. Natural Gas Hydrates 2024:3:3–25. https://doi.org/10.1016/B978-0-443-19219-7.00016-3
  36. Kim K., Truong-Lam H. S., Lee J. D., Sa J.-H. Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage. Energy 2023:270:126902. https://doi.org/10.1016/j.energy.2023.126902
  37. Sun L., Sun H., Yuan C., Zhang L., Yang L., Ling Z., Zhao J., Song Y. Enhanced clathrate hydrate formation at ambient temperatures (287.2 K) and near atmospheric pressure (0.1 MPa): Application to solidified natural gas technology. Chemical Engineering Journal 2023:454:3:140325. https://doi.org/10.1016/j.cej.2022.140325
  38. Gambelli A. M., Rossi F., Cotana F. Gas Hydrates as High-Efficiency Storage System: Perspectives and Potentialities. Energies 2022:15(22):8728. https://doi.org/10.3390/en15228728
  39. Xie J., Meng Q., Jiang A., Chen D., Wang Y., Jiao W., Liu R. Characterization of gas hydrate generation in SDS-R141b compounding static system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024:46(1): 6725–6742. https://doi.org/10.1080/15567036.2024.2354933
  40. Liu W., Wang L., Yang M., Song Y., Zhang L., Li Q., Chen Y., Experimental Study on the Methane Hydrate Formation from Ice Powders. Energy Procedia 2014:61:619–623. https://doi.org/10.1016/j.egypro.2014.11.1184
  41. Koshlak H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023:16(13):4837. https://doi.org/10.3390/ma16134837
  42. Basok B., Davydenko B., Koshlak H., Novikov V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022:15(14):4843. https://doi.org/10.3390/ma15144843
  43. Englezos P. Phase equilibrium in canonical cubic structure I (sI) and II (sII) and hexagonal (sH) gas hydrate solid solutions. Fluid Phase Equilibria 2024:578:114005. https://doi.org/10.1016/j.fluid.2023.114005
  44. Javidani A. M., Abedi-Farizhendi S., Mohammadi A., Mohammadi A. H., Hassan H., Pahlavanzadeh H. Experimental study and kinetic modeling of R410a hydrate formation in presence of SDS, tween 20, and graphene oxide nanosheets with application in cold storage. Journal of Molecular Liquids 2020:304:112665. https://doi.org/10.1016/j.molliq.2020.112665
  45. Gambelli A. M., Rossi F. Thermodynamic and kinetic characterization of methane hydrate nucleation, growth and dissociation processes, according to the Labile Cluster Theory. Chem. Eng. J. 2021:425:130706. https://doi.org/10.1016/j.cej.2021.130706
  46. Pavlenko A. M., Basok B. I. Regularities of boiling-up of emulsified liquids. Heat Transfer Research 2005:36(5):419–424. https://doi.org/10.1615/HeatTransRes.v36.i5.90
  47. Pavlenko A., Koshlak H., Usenko B. The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry 2014:3:55–59.
DOI: https://doi.org/10.2478/rtuect-2024-0056 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 724 - 737
Submitted on: Oct 21, 2024
Accepted on: Nov 3, 2024
Published on: Nov 23, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Anatoliy Pavlenko, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.