Lallouche A., Kolodyaznaya V., Boulkrane M. S., Baranenko D. Low Temperature Refrigeration as an Alternative Anti-Pest Treatment of Alexei, V. Milkov Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci. Rev. 2004:66:183–197. https://doi.org/10.1016/j.earscirev.2003.11.002
Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396
Pavlenko A. M., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016
Brown T. D., Taylor C. E., Bernardo M. P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010:3:1154–1175. https://doi.org/10.3390/en3061154
Chong Z. R., Yang S. H., Babu P., Linga P., Li X. S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy 2016:162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.061
Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439
Andersson V., Kv˦rner A., Norway O., Haines M. Gas hydrates for deep ocean storage of CO2 - Novel technology for utilising hydrates for transport of CO2. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. 5 September 2004, Vancouver, Canada, 2005. https://doi.org/10.1016/B978-008044704-9/50169-5
Takeya S., Ebinuma Т., Uchida Т., Nagao J., Narita H. Self-preservation effect and dissociation rates of CH4 hydrate. J. Crystal Growth 2002:237–239:379–382. https://doi.org/10.1016/S0022-0248(01)01946-7
Pavlenko A. Application of Synthesized Hydrates in the National Economy. Environmental and Climate Technologies 2024:28(1):149–164. https://doi.org/10.2478/rtuect-2024-0013
Pavlenko A., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14:5912. https://doi.org/10.3390/en14185912
Basok B., Davydenko B., Pavlenko A. M. Numerical Network Modeling of Heat and Moisture Transfer through Capillary-Porous Building Materials. Materials 2021:14(8):1819. https://doi.org/10.3390/ma14081819
Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439
Filarsky F., Schmuck C., Schultz H. J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019:91(12):85–91. https://doi.org/10.3390/molecules26123615
Cheng C., Wang F., Tian Y., Wu X., Zheng J., Zhang J., Li L., Yang P., Zhao J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020:117:109492. https://doi.org/10.1016/j.rser.2019.109492
Veluswamy H. P., Kumar A., Kumar R., Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002
Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059
Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338
Majid A. A. A., Koh C. A. 8 – Self-preservation phenomenon in gas hydrates and its application for energy storage, Elliot R. Bernstein (Eds.). In Developments in Physical & Theoretical Chemistry, Intra- and Intermolecular Interactions Between Non-covalently Bonded Species 2021:267–285. https://doi.org/10.1016/B978-0-12-817586-6.00008-6
Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010
Zhang P., Chen X., Li S., Wu Q., Xu Zh. Heat transfer and water migration rules during formation/dissociation of methane hydrate under temperature fields with gradient. International Journal of Heat and Mass Transfer 2021:169:120929. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120929
Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil & Gas Science and Technology. Rev. IFP Energies Nouvelles 2019:74:12. https://doi.org/10.2516/ogst/2018092