Have a personal or library account? Click to login
Features of Heat and Mass Transfer in the Thermodynamic Equilibrium Region of Gas Hydrates Cover

Features of Heat and Mass Transfer in the Thermodynamic Equilibrium Region of Gas Hydrates

Open Access
|Nov 2024

References

  1. Lallouche A., Kolodyaznaya V., Boulkrane M. S., Baranenko D. Low Temperature Refrigeration as an Alternative Anti-Pest Treatment of Alexei, V. Milkov Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci. Rev. 2004:66:183–197. https://doi.org/10.1016/j.earscirev.2003.11.002
  2. Boswell R., Collett T. S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011:4:1045–1528. https://doi.org/10.1039/C0EE00203H
  3. Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396
  4. Pavlenko A. M., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016
  5. Brown T. D., Taylor C. E., Bernardo M. P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010:3:1154–1175. https://doi.org/10.3390/en3061154
  6. Chong Z. R., Yang S. H., Babu P., Linga P., Li X. S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy 2016:162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.061
  7. Pavlenko A. M. Self-preservation Effect of Gas Hydrates. Roc. Och. Srod. 2021:23:346–355. https://doi.org/10.54740/ros.2021.023
  8. Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439
  9. Andersson V., Kv˦rner A., Norway O., Haines M. Gas hydrates for deep ocean storage of CO2 - Novel technology for utilising hydrates for transport of CO2. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. 5 September 2004, Vancouver, Canada, 2005. https://doi.org/10.1016/B978-008044704-9/50169-5
  10. Takeya S., Ebinuma Т., Uchida Т., Nagao J., Narita H. Self-preservation effect and dissociation rates of CH4 hydrate. J. Crystal Growth 2002:237–239:379–382. https://doi.org/10.1016/S0022-0248(01)01946-7
  11. Pavlenko A. Application of Synthesized Hydrates in the National Economy. Environmental and Climate Technologies 2024:28(1):149–164. https://doi.org/10.2478/rtuect-2024-0013
  12. Pavlenko A., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14:5912. https://doi.org/10.3390/en14185912
  13. Basok B., Davydenko B., Pavlenko A. M. Numerical Network Modeling of Heat and Moisture Transfer through Capillary-Porous Building Materials. Materials 2021:14(8):1819. https://doi.org/10.3390/ma14081819
  14. Koshlak H., Pavlenko A. Method of formation of thermophysical properties of porous materials. Roc. Och.Srod. 2019:21(2):1253–1262.
  15. Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439
  16. Pavlenko A., Koshlak H. Production of porous material with projected thermophysical characteristics. Metal. Min.Ind. 2015:7(1):123–127.
  17. Pavlenko A. Self-preservation Effect of Gas Hydrates. Rocznik Ochrona Środowiska 2021:23:346–355. https://doi.org/10.54740/ros.2021.023
  18. Filarsky F., Schmuck C., Schultz H. J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019:91(12):85–91. https://doi.org/10.3390/molecules26123615
  19. Cheng C., Wang F., Tian Y., Wu X., Zheng J., Zhang J., Li L., Yang P., Zhao J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020:117:109492. https://doi.org/10.1016/j.rser.2019.109492
  20. Veluswamy H. P., Kumar A., Kumar R., Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002
  21. Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059
  22. Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338
  23. Majid A. A. A., Koh C. A. 8 – Self-preservation phenomenon in gas hydrates and its application for energy storage, Elliot R. Bernstein (Eds.). In Developments in Physical & Theoretical Chemistry, Intra- and Intermolecular Interactions Between Non-covalently Bonded Species 2021:267–285. https://doi.org/10.1016/B978-0-12-817586-6.00008-6
  24. Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010
  25. Zhang P., Chen X., Li S., Wu Q., Xu Zh. Heat transfer and water migration rules during formation/dissociation of methane hydrate under temperature fields with gradient. International Journal of Heat and Mass Transfer 2021:169:120929. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120929
  26. Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil & Gas Science and Technology. Rev. IFP Energies Nouvelles 2019:74:12. https://doi.org/10.2516/ogst/2018092
  27. Siažik J., Malcho M. Accumulation of primary energy into natural gas hydrates. Procedia Eng. 2017:192:782–787. https://doi.org/10.1016/j.proeng.2017.06.135
DOI: https://doi.org/10.2478/rtuect-2024-0054 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 695 - 711
Submitted on: Sep 20, 2024
Accepted on: Oct 21, 2024
Published on: Nov 17, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Hanna Koshlak, Tomasz Ochrymiuk, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.