Stulpinaite U., Tilvikiene V., Zvicevicius E. Co-pelletization of Hemp Residues and Agricultural Biomass: Effect on Pellet Quality and Stability. Energies 2023:16(16):5900. https://doi.org/10.3390/en16165900
Gramauskas G., Jasinskas A., Kleiza V., Mieldažys R., Blažauskas E., Souček J. Evaluation of Invasive Herbaceous Plants Utilization for the Production of Pressed Biofuel. Processes 2023:11(7):2097. https://doi.org/10.3390/pr11072097
Nilsson D., Bernesson S., Hansson P.-A. Pellet production from agricultural raw materials – A systems study. Biomass Bioenergy 2011:35(1):679–689. https://doi.org/10.1016/j.biombioe.2010.10.016
Pradhan P., Arora A., Mahajani S. M. Pilot scale evaluation of fuel pellets production from garden waste biomass,” Energy Sustain. Dev. 2018:43:(1–14). https://doi.org/10.1016/j.esd.2017.11.005
Pradhan P., Mahajani S. M., Arora A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018:181:215–232. https://doi.org/10.1016/j.fuproc.2018.09.021
Mašán V., Burg P., Souček J., Slaný V., Vaštík L. Energy Potential of Urban Green Waste and the Possibility of Its Pelletization. Sustainability 2023:15(23):16489. https://doi.org/10.3390/su152316489
Pradhan P., Arora A., Mahajani S. M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018:43:1–14. https://doi.org/10.1016/j.esd.2017.11.005
Graham S., Eastwick C., Snape C., Quick W. Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Process. Technol. 2017:160:143–151. https://doi.org/10.1016/j.fuproc.2017.02.017
Serrano C., Monedero E., Lapuerta M., Portero H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 2011:92(3):699–706. https://doi.org/10.1016/j.fuproc.2010.11.031.
Theerarattananoon K. et al. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind. Crops Prod. 2011:33(2):325–332. https://doi.org/10.1016/j.indcrop.2010.11.014
Jasinskas A., Petlickaite R., Jotautiene E., Lemanas E., Soucek J. Assessment of energy properties of maize and multi-crop pellets and environmental impact of their combustion. Presented at the 21st International Scientific Conference Engineering for Rural Development. May 2022. https://doi.org/10.22616/ERDev.2022.21.TF231
Pérez-Orozco R., Patiño D., Porteiro J., Míguez J. L. Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight. Energy 2020:205:118088. https://doi.org/10.1016/j.energy.2020.118088
Rabbat C., Villot A., Awad S., Andrès Y. Gaseous and particulate matter emissions from the combustion of biomass-based insulation materials at end-of-life in a small-scale biomass heating boiler. Fuel 2023:338:127182. https://doi.org/10.1016/j.fuel.2022.127182.
Chaowana P. et al. Utilization of hemp stalk as a potential resource for bioenergy. Mater. Sci. Energy Technol. 2024:7:19–28. https://doi.org/10.1016/j.mset.2023.07.001
Čepauskienė D., Pedišius N., Milčius D. Chemical composition of agromass ash and its influence on ash melting characteristics. Agronomy Research 2018:16(2). https://doi.org/10.15159/AR.18.078
Zhai Y., Liu X., Zhang A., Xu M. Comparison of the formation characteristics of condensable particulate matter from the combustion of three solid fuels. Fuel 2022:329:125492. https://doi.org/10.1016/j.fuel.2022.125492
Yang W. et al. Effect of minerals and binders on particulate matter emission from biomass pellets combustion. Applied Energy 2018:215:106–115. https://doi.org/10.1016/j.apenergy.2018.01.093
Cheng M., Chen S., Qiao Y., Xu M. Role of alkali chloride on formation of ultrafine particulate matter during combustion of typical food waste. Fuel 2022:315:123153. https://doi.org/10.1016/j.fuel.2022.123153
Yang W. et al. Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk. Renewable Energy 2022:190:893–902. https://doi.org/10.1016/j.renene.2022.03.157.
Zeng T., Weller N., Pollex A., Lenz V. Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel 2016:184:689–700. https://doi.org/10.1016/j.fuel.2016.07.047.
Zeng T., Pollex A., Weller N., Lenz V., Nelles M. Blended biomass pellets as fuel for small scale combustion appliances: Effect of blending on slag formation in the bottom ash and pre-evaluation options. Fuel 2018:212:108–116. https://doi.org/10.1016/j.fuel.2017.10.036
LVS EN ISO 18134-2:2017. Solid biofuels – Determination of moisture content – Oven dry method – Part 2: Total moisture – Simplified method. May 18, 2017.
LVS EN ISO 18134-3:2016. Solid biofuels – Determination of moisture content – Oven dry method – Part 3: Moisture in general analysis sample. Jan. 21, 2016.
TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed 01.05.2024]. Available: https://phyllis.nl/
TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed 02.02.2024]. [Online]. Available: https://phyllis.nl/Biomass/View/398
Jagustyn B., Kmieć M., Smędowski Ł., Sajdak M. The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards. J. Energy Inst. 2017:90(5):704–714. https://doi.org/10.1016/j.joei.2016.07.007
Xu Z. et al. Heavy metal pollution is more conducive to the independent invasion of Solidago canadensis L. than the co-invasion of two Asteraceae invasive plants. Acta Oecologica 2023:120:103934. https://doi.org/10.1016/j.actao.2023.103934.
Izydorczyk G. et al. Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets. Energy 2020:194:116898. https://doi.org/10.1016/j.energy.2020.116898.
Samoraj M. et al. Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production. Energy 2023:262:125437. https://doi.org/10.1016/j.energy.2022.125437.
Golia E. E., Bethanis J., Ntinopoulos N., Kaffe G.-G., Komnou A. A., Vasilou C. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustain. Chem. Pharm. 2023:31:100961. https://doi.org/10.1016/j.scp.2022.100961
Milan J., Michalska A., Jurowski K. The comprehensive review about elements accumulation in industrial hemp (Cannabis sativa L.). Food Chem. Toxicol. 2024:184:114344. https://doi.org/10.1016/j.fct.2023.114344
Prade T., Svensson S.-E., Andersson A., Mattsson J. E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011:35(7):3040–3049. https://doi.org/10.1016/j.biombioe.2011.04.006
TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. Hemp, silage (ID number: #1199). [Online]. [Accessed 02.02.2024]. Available: https://phyllis.nl/Biomass/View/1199