Have a personal or library account? Click to login
Search for Alternative Raw Materials for Pellet Production – a Preliminary Study Cover

Search for Alternative Raw Materials for Pellet Production – a Preliminary Study

Open Access
|Nov 2024

References

  1. Flach B., Bolla S. EU Wood Pellet Annual, Report E42022-0049, FAS GAIN, July 2022.
  2. Bioenergy Europe. Policy Brief: Pellets. Bioenergy Europe Statistical Report 2024. [Online]. [Accessed 08.10.2024]. Available: https://bioenergyeurope.org/wp-content/uploads/2024/06/Pellets_Policy-Brief24.pdf
  3. Central Statistical Bureau of Latvia. Production, imports, exports and consumption of fuelwood by its type, in natural units (NACE Rev.2) 2008–2022. [Online]. [Accessed 08.10.2024]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/energy/tables/ena030-production-imports-exports-and-consumption
  4. Central Statistical Bureau of Latvia, “Exports by commodity type, 44013100 Wood pellets.” Accessed: Dec. 21, 2023. [Online]. [Accessed 21.12.2023]. Available: https://eksports.csb.gov.lv/en/years/products-selected/export/2005-2023-2016/TOTAL-IX-44-4401-440131/TOTAL
  5. Central Statistics Bureau of Latvia. Average prices of energy resources for final consumers (excluding VAT) 2006-2023. [Online]. [Accessed 08.10.2024]. Available: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__EN__ENC/ENC010/
  6. Central Statistical Bureau of Latvia. Consumption of fuelwood by its type (%). [Online]. [Accessed 08.10.2024]. Available: https://data.stat.gov.lv/pxweb/en/OSP_OD/OSP_OD__apsekojumi__energ_pat/EPM392.px/
  7. Central Statistical Bureau of Latvia. Heat plants by fuel type 2007–2023. [Online]. [Accessed 08.10.2024]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/energy/tables/enb100-heat-plants-fuel-type
  8. Stulpinaite U., Tilvikiene V., Zvicevicius E. Co-pelletization of Hemp Residues and Agricultural Biomass: Effect on Pellet Quality and Stability. Energies 2023:16(16):5900. https://doi.org/10.3390/en16165900
  9. Gramauskas G., Jasinskas A., Kleiza V., Mieldažys R., Blažauskas E., Souček J. Evaluation of Invasive Herbaceous Plants Utilization for the Production of Pressed Biofuel. Processes 2023:11(7):2097. https://doi.org/10.3390/pr11072097
  10. Nilsson D., Bernesson S., Hansson P.-A. Pellet production from agricultural raw materials – A systems study. Biomass Bioenergy 2011:35(1):679–689. https://doi.org/10.1016/j.biombioe.2010.10.016
  11. Pradhan P., Arora A., Mahajani S. M. Pilot scale evaluation of fuel pellets production from garden waste biomass,” Energy Sustain. Dev. 2018:43:(1–14). https://doi.org/10.1016/j.esd.2017.11.005
  12. Pradhan P., Mahajani S. M., Arora A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018:181:215–232. https://doi.org/10.1016/j.fuproc.2018.09.021
  13. Mašán V., Burg P., Souček J., Slaný V., Vaštík L. Energy Potential of Urban Green Waste and the Possibility of Its Pelletization. Sustainability 2023:15(23):16489. https://doi.org/10.3390/su152316489
  14. Pradhan P., Arora A., Mahajani S. M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018:43:1–14. https://doi.org/10.1016/j.esd.2017.11.005
  15. Graham S., Eastwick C., Snape C., Quick W. Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Process. Technol. 2017:160:143–151. https://doi.org/10.1016/j.fuproc.2017.02.017
  16. Serrano C., Monedero E., Lapuerta M., Portero H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 2011:92(3):699–706. https://doi.org/10.1016/j.fuproc.2010.11.031.
  17. Theerarattananoon K. et al. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind. Crops Prod. 2011:33(2):325–332. https://doi.org/10.1016/j.indcrop.2010.11.014
  18. Jasinskas A., Petlickaite R., Jotautiene E., Lemanas E., Soucek J. Assessment of energy properties of maize and multi-crop pellets and environmental impact of their combustion. Presented at the 21st International Scientific Conference Engineering for Rural Development. May 2022. https://doi.org/10.22616/ERDev.2022.21.TF231
  19. Pérez-Orozco R., Patiño D., Porteiro J., Míguez J. L. Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight. Energy 2020:205:118088. https://doi.org/10.1016/j.energy.2020.118088
  20. Bärnthaler G., Zischka M., Haraldsson C., Obernberger I. Determination of major and minor element contents in solid biofuels.
  21. Rabbat C., Villot A., Awad S., Andrès Y. Gaseous and particulate matter emissions from the combustion of biomass-based insulation materials at end-of-life in a small-scale biomass heating boiler. Fuel 2023:338:127182. https://doi.org/10.1016/j.fuel.2022.127182.
  22. Chaowana P. et al. Utilization of hemp stalk as a potential resource for bioenergy. Mater. Sci. Energy Technol. 2024:7:19–28. https://doi.org/10.1016/j.mset.2023.07.001
  23. Čepauskienė D., Pedišius N., Milčius D. Chemical composition of agromass ash and its influence on ash melting characteristics. Agronomy Research 2018:16(2). https://doi.org/10.15159/AR.18.078
  24. Zhai Y., Liu X., Zhang A., Xu M. Comparison of the formation characteristics of condensable particulate matter from the combustion of three solid fuels. Fuel 2022:329:125492. https://doi.org/10.1016/j.fuel.2022.125492
  25. Yang W. et al. Effect of minerals and binders on particulate matter emission from biomass pellets combustion. Applied Energy 2018:215:106–115. https://doi.org/10.1016/j.apenergy.2018.01.093
  26. Cheng M., Chen S., Qiao Y., Xu M. Role of alkali chloride on formation of ultrafine particulate matter during combustion of typical food waste. Fuel 2022:315:123153. https://doi.org/10.1016/j.fuel.2022.123153
  27. Yang W. et al. Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk. Renewable Energy 2022:190:893–902. https://doi.org/10.1016/j.renene.2022.03.157.
  28. Jandačka J., Holubčík M., Papučik Š., Nosek R. Combustion of pellets from wheat straw. Acta Montan. Slovaca 2012:17(4):283–289.
  29. Zeng T., Weller N., Pollex A., Lenz V. Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel 2016:184:689–700. https://doi.org/10.1016/j.fuel.2016.07.047.
  30. Zeng T., Pollex A., Weller N., Lenz V., Nelles M. Blended biomass pellets as fuel for small scale combustion appliances: Effect of blending on slag formation in the bottom ash and pre-evaluation options. Fuel 2018:212:108–116. https://doi.org/10.1016/j.fuel.2017.10.036
  31. ENplus ST 1001:2022, first edition, 2023. [Online]. [Accessed 01.05.2024]. Available: https://enplus-pellets.eu/enin/component/attachments/?task=download&id=817
  32. LVS EN ISO 14780:2017. Solid biofuels – Sample preparation. Aug. 17, 2017.
  33. LVS EN ISO 18134-2:2017. Solid biofuels – Determination of moisture content – Oven dry method – Part 2: Total moisture – Simplified method. May 18, 2017.
  34. LVS EN ISO 18134-3:2016. Solid biofuels – Determination of moisture content – Oven dry method – Part 3: Moisture in general analysis sample. Jan. 21, 2016.
  35. LVS EN ISO 18122:2023. Solid biofuels – Determination of ash content. Feb. 23, 2023.
  36. LVS EN ISO 16993:2016. Solid biofuels – Conversion of analytical results from one basis to another. Oct. 27, 2016.
  37. LVS EN ISO 18125:2017. Solid biofuels – Determination of calorific value. Aug. 17, 2017.
  38. TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed 01.05.2024]. Available: https://phyllis.nl/
  39. ISO 21404:2020(E). Solid biofuels – Determination of ash melting behaviour, first edition, 2020-01, 2020.
  40. TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed 02.02.2024]. [Online]. Available: https://phyllis.nl/Biomass/View/398
  41. Jagustyn B., Kmieć M., Smędowski Ł., Sajdak M. The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards. J. Energy Inst. 2017:90(5):704–714. https://doi.org/10.1016/j.joei.2016.07.007
  42. Xu Z. et al. Heavy metal pollution is more conducive to the independent invasion of Solidago canadensis L. than the co-invasion of two Asteraceae invasive plants. Acta Oecologica 2023:120:103934. https://doi.org/10.1016/j.actao.2023.103934.
  43. Izydorczyk G. et al. Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets. Energy 2020:194:116898. https://doi.org/10.1016/j.energy.2020.116898.
  44. Samoraj M. et al. Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production. Energy 2023:262:125437. https://doi.org/10.1016/j.energy.2022.125437.
  45. Golia E. E., Bethanis J., Ntinopoulos N., Kaffe G.-G., Komnou A. A., Vasilou C. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustain. Chem. Pharm. 2023:31:100961. https://doi.org/10.1016/j.scp.2022.100961
  46. Milan J., Michalska A., Jurowski K. The comprehensive review about elements accumulation in industrial hemp (Cannabis sativa L.). Food Chem. Toxicol. 2024:184:114344. https://doi.org/10.1016/j.fct.2023.114344
  47. Prade T., Svensson S.-E., Andersson A., Mattsson J. E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011:35(7):3040–3049. https://doi.org/10.1016/j.biombioe.2011.04.006
  48. TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. Hemp, silage (ID number: #1199). [Online]. [Accessed 02.02.2024]. Available: https://phyllis.nl/Biomass/View/1199
  49. LVS EN ISO 17225-1:2021. Solid biofuels – Fuel specifications and classes – Part 1: General requirements. Sep. 23, 2021.
DOI: https://doi.org/10.2478/rtuect-2024-0051 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 652 - 669
Submitted on: Apr 21, 2024
Accepted on: Oct 25, 2024
Published on: Nov 13, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Vivita Priedniece, Amanda Sturmane, Raivis Eglitis, Inna Juhnevica, Guntars Krigers, Vladimirs Kirsanovs, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.