Have a personal or library account? Click to login
Design and Performance Comparison of District Heating Systems in Milan and Riga Cover

Design and Performance Comparison of District Heating Systems in Milan and Riga

Open Access
|Nov 2024

References

  1. Eveloy V., Ayou D. S. Sustainable district cooling systems: Status, challenges, and future opportunities, with emphasis on cooling-dominated regions. Energies 2019:12(2):235. https://doi.org/10.3390/en12020235
  2. Lund H., Möller B., Mathiesen B. V., Dyrelund A. The role of district heating in future renewable energy systems. Energy 2010:35(3):1381–1390. https://doi.org/10.1016/j.energy.2009.11.023
  3. Perez-Mora N. et al. Solar district heating and cooling: A review. Int J Energy Research 2018:42:1419–1441. https://doi.org/10.1002/er.3888
  4. Lund H. et al. Perspectives on fourth and fifth generation district heating. Energy 2021:227:120520. https://doi.org/10.1016/j.energy.2021.120520
  5. Wang H., Wang H., Zhou H., Zhu T. Modeling and optimization for hydraulic performance design in multi-source district heating with fluctuating renewables. Energy Conversion Management 2018:156:113–129. https://doi.org/10.1016/j.enconman.2017.10.078
  6. Inayat A., Raza M. District cooling system via renewable energy sources: A review. Renew Sustain Energy Review 2019:107:360–373. https://doi.org/10.1016/j.rser.2019.03.023
  7. Huang L., Zheng R. Energy and economic performance of solar cooling systems in the hot-summer and cold-winter zone. Buildings 2018:8(3):37. https://doi.org/10.3390/buildings8030037
  8. Luerssen C., Verbois H., Gandhi O., Reindl T., Sekhar C., Cheong D. Global sensitivity and uncertainty analysis of the levelised cost of storage (LCOS) for solar-PV-powered cooling. Applied Energy 2021:286:116533. https://doi.org/10.1016/j.apenergy.2021.116533
  9. Fu R., Remo T., Margolis R. U. S. Utility-Scale Photovoltaics- Plus-Energy Storage System Costs Benchmark. NREL 40. 2018.
  10. Goldie-Scot L. A Behind the Scenes Take on Lithium-ion Battery Prices. BloombergNEF, 2019. [Online]. [Accessed 12.05.2024]. Available: https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/
  11. Morvaj B., Evins R., Carmeliet J. Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout. Energy 2016:116:619–636. https://doi.org/10.1016/j.energy.2016.09.139
  12. Wang H., Yin W., Abdollahi E., Lahdelma R., Jiao W. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Applied Energy 2015:159:401–421. https://doi.org/10.1016/j.apenergy.2015.09.020
  13. Oppelt T., Urbaneck T., Gross U., Platzer B. Dynamic thermo-hydraulic model of district cooling networks. Applied Therm Engineering 2016:102:336–345. https://doi.org/10.1016/j.applthermaleng.2016.03.168
  14. Van der Heijde B. et al. Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems. Energy Conversion Management 2017:151:158–169. https://doi.org/10.1016/j.enconman.2017.08.072
  15. Franchini G., Brumana G., Perdichizzi A. Performance prediction of a solar district cooling system in Riyadh, Saudi Arabia – A case study. Energy Conversion Management 2018:166:372–384. https://doi.org/10.1016/j.enconman.2018.04.048
  16. Brumana G., Franchini G., Ghirardi E. Optimization and performance assessment of a solar district cooling system. AIP Conf. Proc. 2019:2191. https://doi.org/10.1063/1.5138759
  17. McDowell T. P., Bradley D. E., Hiller M., Lam J., Merk J., Keilholz W. TRNSYS 18: The continued evolution of the software. Build Simul Conf Proc 2017:4:2049–2057. https://doi.org/10.26868/25222708.2017.516
  18. Murray M. C., Finlayson N., Kummert M., Macbeth J. Live energy trnsys simulation within google sketchup. IBPSA 2009 – Int Build Perform Simul Assoc 2009:1389–1396.
  19. Remund J., Mueller S., Kunz S., Schilter C. Meteonorm handbook, part II: theory. Bern, Switzerland, Meteotest, 2012.
  20. Franchini G., Brumana G., Perdichizzi A. Monitored performance of the first energy+ autonomous building in Dubai. Energy Buildings 2019:205:109545. https://doi.org/10.1016/j.enbuild.2019.109545
  21. ASHRAE handbook. Fundamentals (SI edition), (1997) Atlanta, Ga: American Society of Heating, Refrigerating, and Air-Conditioning Engineers 1985. 1997.
  22. Lund R., Mohammadi S. Choice of insulation standard for pipe networks in 4th generation district heating systems. Applied Thermal Engineering 2016:98:256–264. https://doi.org/10.1016/j.applthermaleng.2015.12.015
  23. Kristjansson H., Bøhm B. Advanced and traditional Pipe systems: Optimum Design of Distribution and service Pipes. 10th Int Symp Dist Heat Cool, 2006. Technical University of Denmark, Lyngby.
  24. Buffa S., Cozzini M., D’Antoni M., Baratieri M., Fedrizzi R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews 2019:104:504–522. https://doi.org/10.1016/j.rser.2018.12.059
  25. Pawlenka T. et al. Compact automatic controlled internal combustion engine cogeneration system based on natural gas with waste heat recovery from the combustion process. Therm Sci Eng Prog 2023:44:102042. https://doi.org/10.1016/j.tsep.2023.102042
  26. Rosato A., Sibilio S., Ciampi G. Energy, environmental and economic dynamic performance assessment of different micro-cogeneration systems in a residential application. Applied Thermal Engineering 2013:59(1-2):599–617. https://doi.org/10.1016/j.applthermaleng.2013.06.022
  27. Brumana G., Franchini G., Ghirardi E., Ravelli S. Optimization of Solar District Heating & Cooling Systems. J Phys Conf Ser 2022:2385:012113. https://doi.org/10.1088/1742-6596/2385/1/012113
  28. Brumana G., Franchini G., Ghirardi E., Perdichizzi A. Analysis of Solar District Cooling systems: The Effect of Heat Rejection. E3S Web Conf 2020:197. https://doi.org/10.1051/e3sconf/202019708018
  29. International Energy Agency (IEA). Energy Statistics Data Browser. [Online]. [12.05.2024]. Available: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-databrowser?country=ITALY&fuel=Energy%20supply&indicator=TESbySource
  30. Our World in Data. Energy Country Profile 2024. https://ourworldindata.org/grapher/carbon-intensityelectricity?tab=table
  31. Brumana G., Franchini G., Ghirardi E. Potential of solar-driven cooling systems in UAE region. Sol Energy Adv 2022:2:100025. https://doi.org/10.1016/j.seja.2022.100025
  32. Davies G., Woods P. The potential and costs of district heating networks. A report to DECC, Pöyry Energy Consulting and Faber Maunsell AECOM, 2009.
  33. Brumana G., Franchini G., Ghirardi E., Perdichizzi A. Techno-economic optimization of hybrid power generation systems: A renewables community case study. Energy 2022:246:123427. https://doi.org/10.1016/j.energy.2022.123427
DOI: https://doi.org/10.2478/rtuect-2024-0048 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 614 - 626
Submitted on: Apr 14, 2024
Accepted on: Sep 26, 2024
Published on: Nov 7, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Giovanni Brumana, Gatis Bazbauers, Giuseppe Franchini, Elisa Ghirardi, Madara Rieksta, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.