Buck R. C., Murphy P. M., Pabon M. Chemistry, Properties, and Uses of Commercial Fluorinated Surfactants. In: Knepper T., Lange F. (eds) Polyfluorinated Chemicals and Transformation Products. The Handbook of Environmental Chemistry 2011:17:1–24, Springer, Berlin. Heidelberg. https://doi.org/10.1007/978-3-642-21872-9_1
Buck R. C. et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr Environ Assess Manag 2011:7(4):513–541. https://doi.org/10.1002/ieam.258
Jogsten I. E. et al. Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food. Food and Chemical Toxicology 2009:47(7):1577–1583. https://doi.org/10.1016/j.fct.2009.04.004
EFSA. Outcome of a public consultation on the draft risk assessment of perfluoroalkyl substances in food. EFSA Supporting Publications 2020:17(9). https://doi.org/10.2903/sp.efsa.2020.EN-1931
Salvador F., Martin-Sanchez N., Sanchez-Hernandez R., Sanchez-Montero M. J., Izquierdo C. Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration. Microporous and Mesoporous Materials 2015:202:259–276. https://doi.org/10.1016/j.micromeso.2014.02.045
McCleaf P., Englund S., Östlund A., Lindegren K., Wiberg K., Ahrens L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Research 2017:120:77–87. https://doi.org/10.1016/j.watres.2017.04.057
Benskin J. P., Ikonomou M. G., Woudneh M. B., Cosgrove J. R. Rapid characterization of perfluoralkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2012:1247:165–170. https://doi.org/10.1016/j.chroma.2012.05.077
Gonzalez D., Thompson K., Quiñones O., Dickenson E., Bott C. Assessment of PFAS fate, transport, and treatment inhibition associated with a simulated AFFF release within a WASTEWATER treatment plant. Chemosphere 2021:262:127900. https://doi.org/10.1016/j.chemosphere.2020.127900
Coggan T. L. et al. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon 2019:5(8):e02316. https://doi.org/10.1016/j.heliyon.2019.e02316
Bohannon M. E., Narizzano A. M., Guigni B. A., East A. G., Quinn M. J. Next-generation PFAS 6:2 fluorotelomer sulfonate reduces plaque formation in exposed white-footed mice. Toxicological Sciences 2023:192(1):97–105. https://doi.org/10.1093/toxsci/kfad006
Wang N. et al. 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 2011:82(6):853–858. https://doi.org/10.1016/j.chemosphere.2010.11.003
Grgas D., Petrina A., Štefanac T., Bešlo D., Landeka Dragičević T. A Review: Per- and Polyfluoroalkyl Substances— Biological Degradation. Toxics 2023:11(5):446. https://doi.org/10.3390/toxics11050446
Loganathan B. G., Sajwan K. S., Sinclair E., Senthil Kumar K., Kannan K. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research 2007:41(20):4611–4620. https://doi.org/10.1016/j.watres.2007.06.045
Zhang Y. et al. Emerging and legacy per- and polyfluoroalkyl substances (PFAS) in fluorochemical wastewater along full-scale treatment processes: Source, fate, and ecological risk. J Hazard Materials 2024:465:133270. https://doi.org/10.1016/j.jhazmat.2023.133270
Schultz M. M., Higgins C. P., Huset C. A., Luthy R. G., Barofsky D. F., Field J. A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environ Sci Technology 2006:40(23):7350–7357. https://doi.org/10.1021/es061025m
Hamid H., Li L. Y., Grace J. R. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills. Environmental Pollution 2018:235:74–84. https://doi.org/10.1016/j.envpol.2017.12.030
Gallen C., Drage D., Eaglesham G., Grant S., Bowman M., Mueller J. F. Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard Materials 2017:331:132–141. https://doi.org/10.1016/j.jhazmat.2017.02.006
Lang J. R., Allred B. M. K., Field J. A., Levis J. W., Barlaz M. A. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.S. Municipal Landfill Leachate. Environ Sci Technology 2017:51(4):2197–2205. https://doi.org/10.1021/acs.est.6b05005
Fernandes A. R. et al. The potential of recycled materials used in agriculture to contaminate food through uptake by livestock. Science of the Total Environment 2019:667:359–370. https://doi.org/10.1016/j.scitotenv.2019.02.211
Clarke B. O., Smith S. R. Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International 2011:37(1):226–247. https://doi.org/10.1016/j.envint.2010.06.004
Hlouskova V. et al. Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries. Food Additives and Contaminants Part A 2013:30(11):1918–1932. https://doi.org/10.1080/19440049.2013.837585
Zabaleta I. et al. Biodegradation and Uptake of the Pesticide Sulfluramid in a Soil-Carrot Mesocosm. Environ Sci Technology 2018:52(5):2603–2611. https://doi.org/10.1021/acs.est.7b03876
Kim K. Y., Ndabambi M., Choi S., Oh J. E. Legacy and novel perfluoroalkyl and polyfluoroalkyl substances in industrial wastewater and the receiving river water: Temporal changes in relative abundances of regulated compounds and alternatives. Water Research 2021:191:116830. https://doi.org/10.1016/j.watres.2021.116830
Herzke D. et al. Targeted PFAS analyses and extractable organofluorine – Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife. Environ International 2023:171:107640. https://doi.org/10.1016/j.envint.2022.107640