Have a personal or library account? Click to login
Investigation on Per- and Poly-Fluoroalkyl Substances Sources and Removal in a Municipal Wastewater Treatment Plant Cover

Investigation on Per- and Poly-Fluoroalkyl Substances Sources and Removal in a Municipal Wastewater Treatment Plant

Open Access
|Nov 2024

References

  1. Buck R. C., Murphy P. M., Pabon M. Chemistry, Properties, and Uses of Commercial Fluorinated Surfactants. In: Knepper T., Lange F. (eds) Polyfluorinated Chemicals and Transformation Products. The Handbook of Environmental Chemistry 2011:17:1–24, Springer, Berlin. Heidelberg. https://doi.org/10.1007/978-3-642-21872-9_1
  2. Buck R. C. et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr Environ Assess Manag 2011:7(4):513–541. https://doi.org/10.1002/ieam.258
  3. Jogsten I. E. et al. Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food. Food and Chemical Toxicology 2009:47(7):1577–1583. https://doi.org/10.1016/j.fct.2009.04.004
  4. EFSA. Outcome of a public consultation on the draft risk assessment of perfluoroalkyl substances in food. EFSA Supporting Publications 2020:17(9). https://doi.org/10.2903/sp.efsa.2020.EN-1931
  5. Salvador F., Martin-Sanchez N., Sanchez-Hernandez R., Sanchez-Montero M. J., Izquierdo C. Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration. Microporous and Mesoporous Materials 2015:202:259–276. https://doi.org/10.1016/j.micromeso.2014.02.045
  6. McCleaf P., Englund S., Östlund A., Lindegren K., Wiberg K., Ahrens L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Research 2017:120:77–87. https://doi.org/10.1016/j.watres.2017.04.057
  7. Benskin J. P., Ikonomou M. G., Woudneh M. B., Cosgrove J. R. Rapid characterization of perfluoralkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2012:1247:165–170. https://doi.org/10.1016/j.chroma.2012.05.077
  8. Gonzalez D., Thompson K., Quiñones O., Dickenson E., Bott C. Assessment of PFAS fate, transport, and treatment inhibition associated with a simulated AFFF release within a WASTEWATER treatment plant. Chemosphere 2021:262:127900. https://doi.org/10.1016/j.chemosphere.2020.127900
  9. Coggan T. L. et al. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon 2019:5(8):e02316. https://doi.org/10.1016/j.heliyon.2019.e02316
  10. Bohannon M. E., Narizzano A. M., Guigni B. A., East A. G., Quinn M. J. Next-generation PFAS 6:2 fluorotelomer sulfonate reduces plaque formation in exposed white-footed mice. Toxicological Sciences 2023:192(1):97–105. https://doi.org/10.1093/toxsci/kfad006
  11. Wang N. et al. 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 2011:82(6):853–858. https://doi.org/10.1016/j.chemosphere.2010.11.003
  12. Grgas D., Petrina A., Štefanac T., Bešlo D., Landeka Dragičević T. A Review: Per- and Polyfluoroalkyl Substances— Biological Degradation. Toxics 2023:11(5):446. https://doi.org/10.3390/toxics11050446
  13. Loganathan B. G., Sajwan K. S., Sinclair E., Senthil Kumar K., Kannan K. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research 2007:41(20):4611–4620. https://doi.org/10.1016/j.watres.2007.06.045
  14. Zhang Y. et al. Emerging and legacy per- and polyfluoroalkyl substances (PFAS) in fluorochemical wastewater along full-scale treatment processes: Source, fate, and ecological risk. J Hazard Materials 2024:465:133270. https://doi.org/10.1016/j.jhazmat.2023.133270
  15. Schultz M. M., Higgins C. P., Huset C. A., Luthy R. G., Barofsky D. F., Field J. A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environ Sci Technology 2006:40(23):7350–7357. https://doi.org/10.1021/es061025m
  16. Hamid H., Li L. Y., Grace J. R. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills. Environmental Pollution 2018:235:74–84. https://doi.org/10.1016/j.envpol.2017.12.030
  17. Gallen C., Drage D., Eaglesham G., Grant S., Bowman M., Mueller J. F. Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard Materials 2017:331:132–141. https://doi.org/10.1016/j.jhazmat.2017.02.006
  18. Lang J. R., Allred B. M. K., Field J. A., Levis J. W., Barlaz M. A. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.S. Municipal Landfill Leachate. Environ Sci Technology 2017:51(4):2197–2205. https://doi.org/10.1021/acs.est.6b05005
  19. Busch J., Ahrens L., Sturm R., Ebinghaus R. Polyfluoroalkyl compounds in landfill leachates. Environmental Pollution 2010:158(5):1467–1471. https://doi.org/10.1016/j.envpol.2009.12.031
  20. Fernandes A. R. et al. The potential of recycled materials used in agriculture to contaminate food through uptake by livestock. Science of the Total Environment 2019:667:359–370. https://doi.org/10.1016/j.scitotenv.2019.02.211
  21. Clarke B. O., Smith S. R. Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International 2011:37(1):226–247. https://doi.org/10.1016/j.envint.2010.06.004
  22. Hlouskova V. et al. Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries. Food Additives and Contaminants Part A 2013:30(11):1918–1932. https://doi.org/10.1080/19440049.2013.837585
  23. Zabaleta I. et al. Biodegradation and Uptake of the Pesticide Sulfluramid in a Soil-Carrot Mesocosm. Environ Sci Technology 2018:52(5):2603–2611. https://doi.org/10.1021/acs.est.7b03876
  24. Kim K. Y., Ndabambi M., Choi S., Oh J. E. Legacy and novel perfluoroalkyl and polyfluoroalkyl substances in industrial wastewater and the receiving river water: Temporal changes in relative abundances of regulated compounds and alternatives. Water Research 2021:191:116830. https://doi.org/10.1016/j.watres.2021.116830
  25. Herzke D. et al. Targeted PFAS analyses and extractable organofluorine – Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife. Environ International 2023:171:107640. https://doi.org/10.1016/j.envint.2022.107640
DOI: https://doi.org/10.2478/rtuect-2024-0045 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 580 - 588
Submitted on: Mar 25, 2024
Accepted on: Oct 10, 2024
Published on: Nov 6, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Valeria Mezzanotte, Emilio Brivio Sforza, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.