Have a personal or library account? Click to login
Towards a Unified Framework for District Heating Resilience Cover

Towards a Unified Framework for District Heating Resilience

Open Access
|Nov 2024

References

  1. Pakere I., Feofilovs M., Lepiksaar K., Vītoliņš V., Blumberga D. Multi-source district heating system full decarbonization strategies: Technical, economic, and environmental assessment. Energy 2023:285:129296. https://doi.org/10.1016/j.energy.2023.129296
  2. Yuan M., Thellufsen J. Z., Sorknæs P., Lund H., Liang Y. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Conversion Management 2021:244:114527. https://doi.org/10.1016/j.enconman.2021.114527
  3. Osička J., Černoch F. European energy politics after Ukraine: The road ahead. Energy Res. Soc. Sci. 2022:91:102757. https://doi.org/10.1016/j.erss.2022.102757
  4. International Energy Agency. Global Energy Crisis. [Online]. [Accessed 02.10.2024]. Available: https://www.iea.org/topics/global-energy-crisis
  5. Dafoss A/S Climate solutions. Designing a resilient district energy infrastructure. Danfoss, Sep. 2022. [Online]. [Accessed 02.10.2024]. Available: https://www.danfoss.com/en/about-danfoss/our-businesses/heating/district-energy-pioneer/new-white-paper-designing-a-resilient-district-energy-infrastructure/
  6. Kacare M., Pakere I., Gravelsins A., Blumberga A. Impact Assessment of the Renewable Energy Policy Scenarios – a Case Study of Latvia. Environ. Clim. Technol. 2022:26(1):998–1019. https://doi.org/10.2478/rtuect-2022-0075
  7. Sukumaran S., Laht J., Volkova A. Overview of Solar Photovoltaic Applications for District Heating and Cooling. Environ. Clim. Technol. 2023:27(1):964–979. https://doi.org/10.2478/rtuect-2023-0070
  8. Hosseini M., Javanroodi K., Nik V. M. High-resolution impact assessment of climate change on building energy performance considering extreme weather events and microclimate – Investigating variations in indoor thermal comfort and degree-days. Sustain. Cities Soc. 2022:78:103634. https://doi.org/10.1016/j.scs.2021.103634
  9. Park J., Seager T. P., Rao P. S. C., Convertino M., Linkov I. Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems. Risk Analysis 2013:33(3):356–367. https://doi.org/10.1111/j.1539-6924.2012.01885.x
  10. Feofilovs M., Romagnoli F. Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia. Energy Procedia 2017:128:17–23, https://doi.org/10.1016/j.egypro.2017.09.007
  11. Yang M., Sun H., Geng S. On the quantitative resilience assessment of complex engineered systems. Process Saf. Environ. Prot. 2023:174:941–950. https://doi.org/10.1016/j.psep.2023.05.019
  12. Cai B., Xie M., Liu Y., Liu Y., Feng Q. Availability-based engineering resilience metric and its corresponding evaluation methodology. Reliab. Eng. Syst. Saf. 2018:172:216–224. https://doi.org/10.1016/j.ress.2017.12.021
  13. Francis R., Bekera B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014:121:90–103. https://doi.org/10.1016/j.ress.2013.07.004
  14. Vugrin E. D., Warren D. E., Ehlen M. A., Camphouse R.C. A Framework for Assessing the Resilience of Infrastructure and Economic Systems, in Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering, Gopalakrishnan K., Peeta S. (Eds), Springer-Verlag, New York, NY, 2010. https://doi.org/10.1007/978-3-642-11405-2_3
  15. Cottam B. J., Specking E. A., Small C. A., Pohl E. A., Parnell G. S., Buchanan R. K. Defining Resilience for Engineered Systems. Eng. Manag. Res. 2019:8(2):11. https://doi.org/10.5539/emr.v8n2p11
  16. Mottahedi A., Sereshki F., Ataei M., Nouri Qarahasanlou A., Barabadi A. The Resilience of Critical Infrastructure Systems: A Systematic Literature Review. Energies 2021:14(6):1571. https://doi.org/10.3390/en14061571
  17. Roege P. E., Collier Z. A., Mancillas J., McDonagh J. A., Linkov I. Metrics for energy resilience. Energy Policy 2014:72:249–256. https://doi.org/10.1016/j.enpol.2014.04.012
  18. Amirioun M. H., Aminifar F., Lesani H., Shahidehpour M. Metrics and quantitative framework for assessing microgrid resilience against windstorms. Int. J. Electr. Power Energy Syst. 2019:104:716–723. https://doi.org/10.1016/j.ijepes.2018.07.025
  19. Ashrafi R., Amirahmadi M., Tolou-Askari M., Ghods V. Multi-objective resilience enhancement program in smart grids during extreme weather conditions. Int. J. Electr. Power Energy Syst. 2021:129:106824. https://doi.org/10.1016/j.ijepes.2021.106824
  20. Jasiūnas J., Lund P. D., Mikkola J. Energy system resilience – A review. Renew. Sustain. Energy Rev. 2021:150:111476. https://doi.org/10.1016/j.rser.2021.111476
  21. Langer L., Skopik F., Smith P., Kammerstetter M. From old to new: Assessing cybersecurity risks for an evolving smart grid. Comput. Secur. 2016:62:165–176. https://doi.org/10.1016/j.cose.2016.07.008
  22. Regional Group Nordic. 2022 Nordic and Baltic Grid Disturbance Statistics. ENTSO-E AISBL, 2023. [Online]. [Accessed 15.05.2024]. Available: https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Nordic/2023/2022_Nordic_and_Baltic_Grid_Disturbance_Statistics_FOR_PUBLISHING.pdf
  23. Sun Q., et al. Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination. Energy 2022:241:122834. https://doi.org/10.1016/j.energy.2021.122834
  24. Moslehi S., Reddy T. A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Applied Energy 2018:228:487–498. https://doi.org/10.1016/j.apenergy.2018.06.075
  25. Shafiei K., Zadeh S. G., Hagh M. T. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience. J. Energy Storage 2024:87:111339. https://doi.org/10.1016/j.est.2024.111339
  26. Zhou Y. Climate change adaptation with energy resilience in energy districts – A state-of-the-art review. Energy Build. 2023:279:112649. https://doi.org/10.1016/j.enbuild.2022.112649
  27. Johansson B. Security aspects of future renewable energy systems – A short overview. Energy 2013:61:598–605. https://doi.org/10.1016/j.energy.2013.09.023
  28. Clegg S., Mancarella P. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies. Energy 2019:184:191–203. https://doi.org/10.1016/j.energy.2018.02.078
  29. Moore E. A., Russell J. D., Babbitt C. W., Tomaszewski B., Clark S. S. Spatial modeling of a second-use strategy for electric vehicle batteries to improve disaster resilience and circular economy. Resour. Conserv. Recycl. 2020:160:104889. https://doi.org/10.1016/j.resconrec.2020.104889
  30. Hussain A., Bui V.-H., Kim H.-M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy 2019:240:56–72. https://doi.org/10.1016/j.apenergy.2019.02.055
  31. Kubule A., Kramens J., Bimbere M., Pedišius N., Blumberga D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024:17(2):383. https://doi.org/10.3390/en17020383
  32. Zhou Y. Climate change adaptation with energy resilience in energy districts. A state-of-the-art review. Energy Build. 2023:279:112649. https://doi.org/10.1016/j.enbuild.2022.112649
  33. ENTSOE. 2021 Nordic and Baltig grid disturbance statistics. Brussels, 2022. [Online]. [Accessed: 04.05.2024]. Available: https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Nordic/2022/2021_Nordic_and_Baltic_Grid_Disturbance_Statistics_FOR_PUBLISHING.pdf
  34. OtuozeA. O., MustafaM. W., LarikR. M. Smart grids security challenges: Classification by sources of threats. J. Electr. Syst. Inf. Technol. 2018:5(3):468–483. https://doi.org/10.1016/j.jesit.2018.01.001
  35. LiuW., KlipD., Zappa W., Jelles S., Kramer G. J., Van Den Broek M. The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands. Energy 2019:189:116367. https://doi.org/10.1016/j.energy.2019.116367
  36. Olsson O., Eriksson A., Sjöström J., Anerud E. Keep that fire burning: Fuel supply risk management strategies of Swedish district heating plants and implications for energy security. Biomass Bioenergy 2016:90:70–77. https://doi.org/10.1016/j.biombioe.2016.03.015
  37. Karhunen A., Laihanen M., Ranta T. Supply security for domestic fuels at Finnish combined heat and power plants. Biomass Bioenergy 2015:77:45–52. https://doi.org/10.1016/j.biombioe.2015.03.019
  38. Mao D., Wang P., Fang Y.-P., Ni L. Understanding District Heating Networks Vulnerability: A Comprehensive Analytical Approach with Controllability Consideration. Sustain. Cities Soc. 2024:101:105068. https://doi.org/10.1016/j.scs.2023.105068
  39. Hallberg D., Stojanović B., Akander J. Status, needs and possibilities for service life prediction and estimation of district heating distribution networks. Struct. Infrastruct. Eng. 2012:8(1):41–54. https://doi.org/10.1080/15732470903213740
  40. Mao D., Wang P., Wang W., Ni L. Reliability segment design in single-source district heating networks based on valve network models. Sustain. Cities Soc. 2020:63:102463. https://doi.org/10.1016/j.scs.2020.102463
  41. Ding S., Gu W., Lu S., Yu R., Sheng L. Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism. Appl. Energy 2022:311:118650. https://doi.org/10.1016/j.apenergy.2022.118650
  42. Hines P., Apt J., Talukdar S. Large blackouts in North America: Historical trends and policy implications. Energy Policy 2009:37(12):5249–5259. https://doi.org/10.1016/j.enpol.2009.07.049
  43. Ouyang M., Dueñas-Osorio L. Multi-dimensional hurricane resilience assessment of electric power systems. Struct. Saf. 2014:48:15–24. https://doi.org/10.1016/j.strusafe.2014.01.001
  44. Jufri F. H., Widiputra V., Jung J. State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies. Appl. Energy 2019:239:1049–1065. https://doi.org/10.1016/j.apenergy.2019.02.017
  45. Bruneau M. et al. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003:19(4):733–752. https://doi.org/10.1193/1.1623497
  46. Martišauskas L., Augutis J., Krikštolaitis R. Methodology for energy security assessment considering energy system resilience to disruptions. Energy Strategy Rev. 2018:22:106–118. https://doi.org/10.1016/j.esr.2018.08.007
  47. Molyneaux L., Brown C., Wagner L., Foster J. Measuring resilience in energy systems: Insights from a range of disciplines. Renew. Sustain. Energy Rev. 2016:59:1068–1079. https://doi.org/10.1016/j.rser.2016.01.063
  48. Moslehi S., Reddy T. A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Appl. Energy 2018:228:487–498. https://doi.org/10.1016/j.apenergy.2018.06.075
  49. Lai K., Illindala M. S. A distributed energy management strategy for resilient shipboard power system. Appl. Energy 2018:228:821–832. https://doi.org/10.1016/j.apenergy.2018.06.111
  50. Vugrin E. D., Warren D. E., Ehlen M. A. A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Saf. Prog. 2011:30(3):280–290. https://doi.org/10.1002/prs.10437
  51. Shinozuka M. et al. Resilience of Integrated Power and Water Systems (2003–2004).
  52. Panteli M., Mancarella P. The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience. IEEE Power Energy Mag. 2015:13(3):58–66. https://doi.org/10.1109/MPE.2015.2397334
  53. Zimmerman N., Dahlquist E., Kyprianidis K. Towards On-line Fault Detection and Diagnostics in District Heating Systems. Energy Procedia 2017:105:1960–1966. https://doi.org/10.1016/j.egypro.2017.03.567
  54. Cao S., Wang P., Wang W., Yao Y. Reliability evaluation of existing district heating networks based on a building’s realistic heat gain under failure condition. Sci. Technol. Built Environ. 2017:23(3):522–531. https://doi.org/10.1080/23744731.2017.1267491
  55. Fouladvand J. Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters. Energy 2022:261:125353. https://doi.org/10.1016/j.energy.2022.125353
DOI: https://doi.org/10.2478/rtuect-2024-0044 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 566 - 579
Submitted on: Apr 5, 2024
Accepted on: Oct 3, 2024
Published on: Nov 2, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Vivita Priedniece, Ieva Pakere, Guntars Krigers, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.