Pakere I., Feofilovs M., Lepiksaar K., Vītoliņš V., Blumberga D. Multi-source district heating system full decarbonization strategies: Technical, economic, and environmental assessment. Energy 2023:285:129296. https://doi.org/10.1016/j.energy.2023.129296
Yuan M., Thellufsen J. Z., Sorknæs P., Lund H., Liang Y. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Conversion Management 2021:244:114527. https://doi.org/10.1016/j.enconman.2021.114527
Kacare M., Pakere I., Gravelsins A., Blumberga A. Impact Assessment of the Renewable Energy Policy Scenarios – a Case Study of Latvia. Environ. Clim. Technol. 2022:26(1):998–1019. https://doi.org/10.2478/rtuect-2022-0075
Sukumaran S., Laht J., Volkova A. Overview of Solar Photovoltaic Applications for District Heating and Cooling. Environ. Clim. Technol. 2023:27(1):964–979. https://doi.org/10.2478/rtuect-2023-0070
Hosseini M., Javanroodi K., Nik V. M. High-resolution impact assessment of climate change on building energy performance considering extreme weather events and microclimate – Investigating variations in indoor thermal comfort and degree-days. Sustain. Cities Soc. 2022:78:103634. https://doi.org/10.1016/j.scs.2021.103634
Park J., Seager T. P., Rao P. S. C., Convertino M., Linkov I. Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems. Risk Analysis 2013:33(3):356–367. https://doi.org/10.1111/j.1539-6924.2012.01885.x
Feofilovs M., Romagnoli F. Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia. Energy Procedia 2017:128:17–23, https://doi.org/10.1016/j.egypro.2017.09.007
Yang M., Sun H., Geng S. On the quantitative resilience assessment of complex engineered systems. Process Saf. Environ. Prot. 2023:174:941–950. https://doi.org/10.1016/j.psep.2023.05.019
Cai B., Xie M., Liu Y., Liu Y., Feng Q. Availability-based engineering resilience metric and its corresponding evaluation methodology. Reliab. Eng. Syst. Saf. 2018:172:216–224. https://doi.org/10.1016/j.ress.2017.12.021
Francis R., Bekera B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014:121:90–103. https://doi.org/10.1016/j.ress.2013.07.004
Vugrin E. D., Warren D. E., Ehlen M. A., Camphouse R.C. A Framework for Assessing the Resilience of Infrastructure and Economic Systems, in Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering, Gopalakrishnan K., Peeta S. (Eds), Springer-Verlag, New York, NY, 2010. https://doi.org/10.1007/978-3-642-11405-2_3
Cottam B. J., Specking E. A., Small C. A., Pohl E. A., Parnell G. S., Buchanan R. K. Defining Resilience for Engineered Systems. Eng. Manag. Res. 2019:8(2):11. https://doi.org/10.5539/emr.v8n2p11
Mottahedi A., Sereshki F., Ataei M., Nouri Qarahasanlou A., Barabadi A. The Resilience of Critical Infrastructure Systems: A Systematic Literature Review. Energies 2021:14(6):1571. https://doi.org/10.3390/en14061571
Roege P. E., Collier Z. A., Mancillas J., McDonagh J. A., Linkov I. Metrics for energy resilience. Energy Policy 2014:72:249–256. https://doi.org/10.1016/j.enpol.2014.04.012
Amirioun M. H., Aminifar F., Lesani H., Shahidehpour M. Metrics and quantitative framework for assessing microgrid resilience against windstorms. Int. J. Electr. Power Energy Syst. 2019:104:716–723. https://doi.org/10.1016/j.ijepes.2018.07.025
Ashrafi R., Amirahmadi M., Tolou-Askari M., Ghods V. Multi-objective resilience enhancement program in smart grids during extreme weather conditions. Int. J. Electr. Power Energy Syst. 2021:129:106824. https://doi.org/10.1016/j.ijepes.2021.106824
Langer L., Skopik F., Smith P., Kammerstetter M. From old to new: Assessing cybersecurity risks for an evolving smart grid. Comput. Secur. 2016:62:165–176. https://doi.org/10.1016/j.cose.2016.07.008
Sun Q., et al. Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination. Energy 2022:241:122834. https://doi.org/10.1016/j.energy.2021.122834
Moslehi S., Reddy T. A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Applied Energy 2018:228:487–498. https://doi.org/10.1016/j.apenergy.2018.06.075
Shafiei K., Zadeh S. G., Hagh M. T. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience. J. Energy Storage 2024:87:111339. https://doi.org/10.1016/j.est.2024.111339
Zhou Y. Climate change adaptation with energy resilience in energy districts – A state-of-the-art review. Energy Build. 2023:279:112649. https://doi.org/10.1016/j.enbuild.2022.112649
Clegg S., Mancarella P. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies. Energy 2019:184:191–203. https://doi.org/10.1016/j.energy.2018.02.078
Moore E. A., Russell J. D., Babbitt C. W., Tomaszewski B., Clark S. S. Spatial modeling of a second-use strategy for electric vehicle batteries to improve disaster resilience and circular economy. Resour. Conserv. Recycl. 2020:160:104889. https://doi.org/10.1016/j.resconrec.2020.104889
Hussain A., Bui V.-H., Kim H.-M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy 2019:240:56–72. https://doi.org/10.1016/j.apenergy.2019.02.055
Kubule A., Kramens J., Bimbere M., Pedišius N., Blumberga D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024:17(2):383. https://doi.org/10.3390/en17020383
Zhou Y. Climate change adaptation with energy resilience in energy districts. A state-of-the-art review. Energy Build. 2023:279:112649. https://doi.org/10.1016/j.enbuild.2022.112649
OtuozeA. O., MustafaM. W., LarikR. M. Smart grids security challenges: Classification by sources of threats. J. Electr. Syst. Inf. Technol. 2018:5(3):468–483. https://doi.org/10.1016/j.jesit.2018.01.001
LiuW., KlipD., Zappa W., Jelles S., Kramer G. J., Van Den Broek M. The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands. Energy 2019:189:116367. https://doi.org/10.1016/j.energy.2019.116367
Olsson O., Eriksson A., Sjöström J., Anerud E. Keep that fire burning: Fuel supply risk management strategies of Swedish district heating plants and implications for energy security. Biomass Bioenergy 2016:90:70–77. https://doi.org/10.1016/j.biombioe.2016.03.015
Karhunen A., Laihanen M., Ranta T. Supply security for domestic fuels at Finnish combined heat and power plants. Biomass Bioenergy 2015:77:45–52. https://doi.org/10.1016/j.biombioe.2015.03.019
Mao D., Wang P., Fang Y.-P., Ni L. Understanding District Heating Networks Vulnerability: A Comprehensive Analytical Approach with Controllability Consideration. Sustain. Cities Soc. 2024:101:105068. https://doi.org/10.1016/j.scs.2023.105068
Hallberg D., Stojanović B., Akander J. Status, needs and possibilities for service life prediction and estimation of district heating distribution networks. Struct. Infrastruct. Eng. 2012:8(1):41–54. https://doi.org/10.1080/15732470903213740
Mao D., Wang P., Wang W., Ni L. Reliability segment design in single-source district heating networks based on valve network models. Sustain. Cities Soc. 2020:63:102463. https://doi.org/10.1016/j.scs.2020.102463
Ding S., Gu W., Lu S., Yu R., Sheng L. Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism. Appl. Energy 2022:311:118650. https://doi.org/10.1016/j.apenergy.2022.118650
Hines P., Apt J., Talukdar S. Large blackouts in North America: Historical trends and policy implications. Energy Policy 2009:37(12):5249–5259. https://doi.org/10.1016/j.enpol.2009.07.049
Jufri F. H., Widiputra V., Jung J. State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies. Appl. Energy 2019:239:1049–1065. https://doi.org/10.1016/j.apenergy.2019.02.017
Bruneau M. et al. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003:19(4):733–752. https://doi.org/10.1193/1.1623497
Martišauskas L., Augutis J., Krikštolaitis R. Methodology for energy security assessment considering energy system resilience to disruptions. Energy Strategy Rev. 2018:22:106–118. https://doi.org/10.1016/j.esr.2018.08.007
Molyneaux L., Brown C., Wagner L., Foster J. Measuring resilience in energy systems: Insights from a range of disciplines. Renew. Sustain. Energy Rev. 2016:59:1068–1079. https://doi.org/10.1016/j.rser.2016.01.063
Moslehi S., Reddy T. A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Appl. Energy 2018:228:487–498. https://doi.org/10.1016/j.apenergy.2018.06.075
Vugrin E. D., Warren D. E., Ehlen M. A. A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Saf. Prog. 2011:30(3):280–290. https://doi.org/10.1002/prs.10437
Panteli M., Mancarella P. The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience. IEEE Power Energy Mag. 2015:13(3):58–66. https://doi.org/10.1109/MPE.2015.2397334
Zimmerman N., Dahlquist E., Kyprianidis K. Towards On-line Fault Detection and Diagnostics in District Heating Systems. Energy Procedia 2017:105:1960–1966. https://doi.org/10.1016/j.egypro.2017.03.567
Cao S., Wang P., Wang W., Yao Y. Reliability evaluation of existing district heating networks based on a building’s realistic heat gain under failure condition. Sci. Technol. Built Environ. 2017:23(3):522–531. https://doi.org/10.1080/23744731.2017.1267491
Fouladvand J. Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters. Energy 2022:261:125353. https://doi.org/10.1016/j.energy.2022.125353